Tomasz Kędrzyński, Jan Sibilski unter Mitarbeit von Peter Petrovic

Physik 2

Elektrizitätslehre, Magnetismus, Wärmelehre, Mechanische Schwingungen und Wellen

Inhaltsverzeichnis

I. Elektrostatik	3
1. Elektrische Ladungen	
2. Coulombschegesetz	
3. Das elektrische Feld	
4. Arbeit und Energie in elektrostatischen Feld	. 17
5. Geladene Teilchen in homogenen elektrostatischen Feld	. 20
6. Die Kondensatoren	
7. Weiß ich das schon?	. 28
II. Magnetismus	.32
Magnete und ihre Wirkungen	
2. Magnetisches Feld	
3. Kräfte auf stromdurchflossene Leiter und bewegte Ladungen	
4. Elektromagnetische Induktion	. 43
5. Wechselstrom	
6. Weiß ich das schon?	. 51
III. Thermodynamik	55
Die kinetische Theorie der Gase	
Die kinetische Deutung der Temperatur, allgemeines	
Gasgesetz	. 58
3. Umwandlungen des idealen Gases	
4. I und II Satz der Thermodynamik. Motoren	
5. Wärme	
6. Weiß ich das schon?	. 74
IV. Mechanische Schwingungen und Wellen	. 77
1. Harmonische Schwingungen	
2. Das Fadenpendel	
3. Energiesatz bei Schwingungen	. 85
4. Gedämpfte und erzwungene Schwingungen, Resonanz	
5. Mechanische Wellen	. 88
6. Reflexion und Brechung	
7. Interferenz und Beugung der mechanischen Wellen	
8. Elemente der Akustik	
9. Doppler Effekt	101
10. Weiß ich das schon?	103
Fachwortschatz	108
Lösungen der Rechen- und Testaufgaben	117

I. Elektrostatik

Einführung

In unserer modernen Welt ist die Elektrizität nicht mehr wegzudenken. Jeden Tag wird Elektrizität benötigt, um Häuser und Städte zu beleuchten, um Wohnungen zu heizen und Lebensmittel zu kühlen und viele Geräte anzutreiben.

Der Name *Elektrizität* ist dem griechischen Sprachgebrauch entlehnt. In der Antike konnten die Griechen bereits durch Reiben eines Bernsteins mit Tüchern leichte Körper von diesem Bernstein anziehen lassen oder auch auf diese Weise Funken erzeugen. Der Bernstein hatte seinen Namen nach dem Fluss, wo er gefunden wurde: *electron*.

Um zu einem Verständnis der Elektrizität zu gelangen, fängt man am besten bei der Erscheinung an, die jedem von uns bekannt ist: das Einschalten einer Lampe.

Wenn man den Stecker einer Tischlampe in der Steckdose steckt und den Schalter der Lampe betätigt, dann leuchtet sie auf und wir sagen: "es fließt ein Strom".

Der elektrische Strom ist eine geordnete Bewegung von elektrischen Ladungen.

1. Elektrische Ladungen

Grundwissen

Elektrische Ladungen

Es gibt zwei Arten elektrischer Ladungen, **positive** und **negative Ladungen**. Elektronen und Protonen tragen gleich große, aber entgegengesetzte Ladungen. Protonen haben, wie wir es nennen, eine positive (+) Ladung, Elektronen eine negative (-) Ladung, Neutronen haben keine Ladung, sie sind neutral.

(Die Bezeichnung positiv bzw. negativ ist vollkommen willkürlich und hätte auch umgekehrt sein können) D

Der Betrag dieser Ladung heißt Elementarladung.

Die Ladungen des Elektrons -e und des Protons +e

 $1e = 1,6021773.10^{-19} C.$

Hat ein Atom gleich viel Elektronen wie Protonen, so ist es ungeladen (neutral).

Alle Körper besitzen eine große Anzahl elektrischer Ladungen. Normalerweise merken wir davon nichts, da sich die Wirkungen der positiven und negativen Ladungen kompensieren (aufheben). Ein Körper mit einer Gesamtladung Null (von beiden Ladungsarten gleich viel), ist nach außen hin "elektrisch neutral".

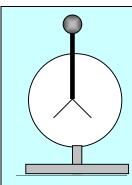
(Daher ist es sinnvoll, die zwei Arten von Ladungen mit positivem und negativem Vorzeichen zu versehen und die Gesamtladung eines Körpers zu betrachten)

"Geladen bedeutet": Die Anzahl der positiven und negativen Ladungen ist nicht gleich positiv geladen: Elektronenmangel negativ geladen: Elektronenüberschuss

Ungeladen (neutral) bedeutet: Die Anzahl der positiven und negativen Ladungen ist gleich. **Die elektrische Aufladung von Körpern**

Es gibt drei Methoden der Aufladung von Körpern:

a) durch Reibung b) durch Berühr


b) durch Berührung c) durch Influenz

Elektroskop

Zum Nachweis der elektrischen Ladung dient das Elektroskop. In einem geerdeten Gehäuse befindet sich eine vertikale Metallstange, an der ein beweglicher Zeiger befestigt ist. Dieser ist unten etwas schwerer, so dass er senkrecht stehen bleibt.

Wird die obere Platte mit einem negativen Pol in Verbindung gebracht, so verteilen sich die fließenden Elektronen auf dem Stab und dem Zeiger.

Da sich gleichartige Pole abstoßen, tritt der Zeigerausschlag ein. Je stärker die Ladung ist, desto stärker tritt der Zeigerausschlag auf.

Mit dem Elektroskop lässt sich

- a) das Vorhandensein von Ladungen,
- b) das Vorzeichen von Ladungen feststellen.

Aufgabe 1.

Ein Blättchenelektroskop wurde durch eine positive Ladungsmenge auf vollen Ausschlag gebracht. Kreuze jeweils die richtige Antwort an.

Das Elektroskop wird berührt mit	Der Ausschlag bleibt erhalten	Der Ausschlag geht ganz zurück
dem Finger		
einem nichtisolierten Draht		
einem ungeleadenen Hartgummistab		
einer ungeladenen Zelluloidfolie		
einem feuchten Holzstäbchen		

Aufgabe 2

Einem positiv geladenen Elektroskop, dessen Blättchen einen mittleren Ausschlag anzeigen, werden Ladungsmengen aus verschiedenen Quellen zugeführt.

Kennzeichne die richtigen Aussagen!

Die zugeführte Ladungsmenge stammt von	Der Ausschlag geht etwas zurück	Der Ausschlag wird etwas größer
dem negativen Pol einer Hochspannungsquelle		
einem mit Seide geriebenen Styroporstück		
einer geriebenen Zelluloidfolie		
einer Metallkugel, die zuerst mit geriebenen Plexiglas aufgeladen wurde		

Die Schüler wollen eine isolierte Metallkugel durch Influenz positiv aufladen. Einer von ihnen hat die Methode A vorgeschlagen, ein anderer die Methode B.

Welche Methode ist richtig? Was war falsch gedacht in der Methode, die physikalisch nicht korrekt war?

Methode A

Wenn wir einen positiv geladenen Stab einer isolierten Metallkugel nähern ohne diese zu berühren, werden die freien Elektronen des Metalls von dem positiv geladenen Stab angezogen und sammeln sich auf der dem Glasstab am nahesten gelegenen Stelle der Metallkugel. Das dem Glasstab abgewandte Stück des metallischen Körpers hat nun mehr Protonen und ist positiv geladen. Die Kugel ist insgesamt immer noch neutral! Die Ladungen wurden lediglich in zwei unterschiedliche Bereiche des Körpers verteilt.

Falls die Metallkugel jetzt geerdet wird, fließen Elektronen von der Erde zur Metallkugel . Entfernt man nun die Erdung und den Stab, besitzt der metallische Körper eine positive Nettoladung, die sich gleichmäßig verteilt. Auf diese Weise wird die Metallkugel positiv aufgeladen.

Methode B

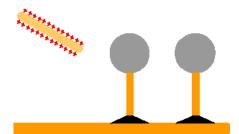
Wenn wir einen negativ geladenen Stab einer isolierten Metallkugel nähern ohne diese() zu berühren, werden die freien Elektronen des Metalls von dem positiv geladenen Stab abgestoßen und sammeln sich auf der dem Glasstab am entferntesten gelegenen Stelle der Metallkugel. Das dem Glasstab abgewandte Stück der metallischen Kugel hat nun mehr Elektronen und ist negativ geladen.. Die Kugel ist insgesamt immer noch neutral! Die Ladungen wurden nur auf zwei unterschiedliche des Bereiche Körpers verteilt.

Falls die Metallkugel jetzt geerdet wird, fließen Elektronen von der Metallkugel zur Erde ab. Entfernt man nun die Erdung und den Stab, besitzt der metallische Körper eine positive Nettoladung, die sich gleichmäßig verteilt.

Aufagbe 4

Finde die richtigen Aussagen zu elektrischen Ladungen

- 1. Wir unterscheiden
- a. ist die Summe aller elektrischen Ladungen konstant.
- 2. Das elektrische Elementarquantum e
- b. (+) und (-) Ladungen.
- 3. Elektrische Ladungen


..

..

- c. ist die kleinste frei vorkommende Ladung.
- 4. In einem abgeschlossenen System ..
- d. sind an materielle Ladungsträger gebunden.

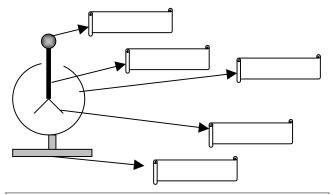
Aufgabe 5

Zur Verfügung steht ein durch Reibung positiv geladener Glasstab und zwei Metallkugeln, welche isoliert aufgestellt sind.

- a) Erkläre, wie man mit der obigen Gerätschaft eine Metallkugel negativ aufladen kann.
- b) Erkläre, wie man mit der obigen Gerätschaft eine Metallkugel positiv aufladen kann. Wähle zur Erklärung aus den sieben unten formulierten Sätzen die, die sachgemäß die Reihenfolge des ganzen Aufladeprozess beschreiben (3 oder 4 zur jedem Punkt) und veranschauliche alle Tätigkeiten mit Zeichnungen.

- 1. Man erdet die Kugel mit der Hand. Dadurch können die Elektronen von der Erde in die Kugel hineinfließen.
- 2. Man nähert den Glasstab einer Kugel, so dass Influenz auftritt.
- 3. Man bringt die beiden Metallkugeln in Kontakt.
- 4. Bei Anwesenheit des Glasstabes trennt man die Kugeln.
- 5. Nun nimmt man wieder die Hand von der Kugel und entfernt schließlich auch den Glasstab. Nun ist die Kugel negativ aufgeladen.
- 6. Nun nähert man den positiv geladenen Glasstab, dadurch kommt es zu einer Influenz (erste Kugel negativ, zweite Kugel positiv).
- 7. Nun entfernt man den Glasstab und hat eine positiv und eine negativ geladene Kugel.

kt a)	Lösung von dem Punkt b)			
Zeichnung	Tätigkeit	Zeichnung		


Wie kann man bei einem elektrisch geladenen Körper feststellen, ob dieser Körper elektrisch positiv oder negativ geladen ist? Beschreibe kurz deine Methode.

Aufgabe 7

Zwei Metallkugeln sind unterschiedlich stark negativ geladen. Wie kann man feststellen, welche der Kugeln stärker geladen ist? Beschreibe kurz deine Methode.

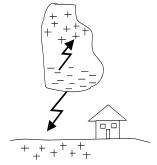
Nenne entsprechende Teile des Elektroskops

fester Stab, bewegliche Blättchen, Metallkugel, Metallgehäuse, isolierte Platte.

Aufgabe 9

Nähern wir einem ungeladenen Elektroskop eine geladene Metallkugel, so beobachten wir bereits vor der Berührung der Kugel mit dem Elektroskop einen Zeigerausschlag. Dieser geht bei Entfernung der geladenen Kugel wieder zurück. Erkläre diesen Vorgang.

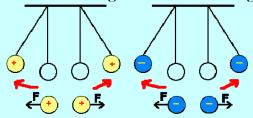
Aufgabe 10 (Lückentext) "Wie enststeht ein Blitz?"

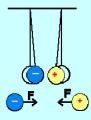

Sicher bist du schon von Gewitter überrascht worden und weißt, wie schnell an schwülen Tagen Gewitterwolken aufziehen können. Die warme, feuchte Luft steigt in die Höhe. DortWasserdampf zu Tropfen und bildet Wolken. An sehr heißen Tagen

DortWasserdampf zu Tropfen und bildet Wolken. An sehr heißen Tagen erreicht dieseGeschwindigkeiten von mehr als 100km/h.

Anschließend stürzt in diesem Raum von allen Seiten Luft zurück und erzeugt so den Donner. Durch die mehrfache Reflexion des Donners an verschiedenen Wolken kommt das "Grollen" zustande.

Mit den ersten Blitzen beginnt der Ladungsausgleich zwischen den Wolken. Die elektrischen zwischen den positiven oberen Wolken und den negativen unteren Wolken werden kleiner und können die Regentropfen in den unteren Wolken nicht mehr halten. Daher setzt noch nach den ersten Blitzen meist ein stärker ein, dem manchmal ein Hagelschauer folgt.


erwärmt sich, Luftströmung, Regenguss, schweben, Ladungsausgleich, die Tropfen, Blitze, Anziehungskräfte, ungleichnamig, erstarren, Ladungstrennungen, kondensiert.


2. Coulombsches Gesetz, Satz von der Erhaltung der Ladung

Grundwissen

Wechselwirkungen zwischen Ladungen

Ladungen gleichen Vorzeichens (gleichnamige Ladungen) stoßen einander ab

Ladungen mit entgegengesetztem Vorzeichen (ungleichnamige) ziehen einander an!

Das Symbol für Ladung ist Q, die **Einheit der Ladung ist das Coulomb [C]**. $1C = 6,241506.10^{18}$ e

Es ist diejenige Ladungsmenge, die bei einer zeitlich konstanten Stromstärke von 1A während der Zeit von 1 s durch den Leiter fließt.

Coulombsches Gesetz

Die Coulombkraft ist proportional dem Produkt der beiden Ladungen und umgekehrt proportional dem Quadrat des Abstandes.

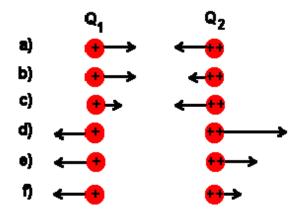
$$F = k \frac{q \cdot Q}{r^2}$$
 , $k = \frac{1}{4\pi\varepsilon_0}$

F - elektrische Kraft

q, Q - Ladungen der beiden Teilchen in Coulomb

r - Abstand zwischen den beiden geladenen Teilchen

 ε_0 – absolute Dielektrizitätskonstante, $\varepsilon_0 = 8,85 \cdot 10^{-12} \frac{C^2}{N \cdot m^2}$


Satz von der Erhaltung der Ladung

Die elektrische Ladung eines abgeschlossenen Systems ist konstant.

Bei der elektrischen Vorgängen wird elektrische Ladung entweder zwischen den Körpern transportiert oder in ihnen getrennt. Sie wird weder erschaffen noch vernichtet.

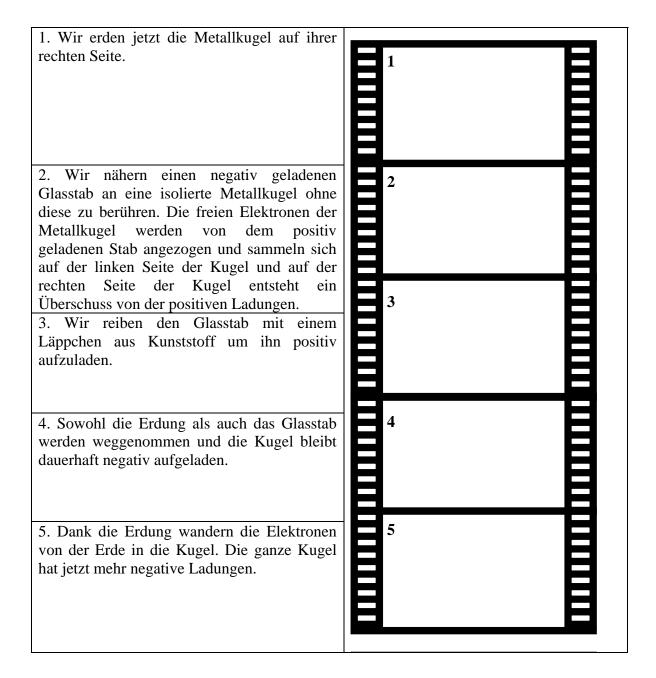
8

Die Ladung Q_2 ist doppelt so groß wie die Ladung Q_1 . Beide sind positiv geladen. Welche(s) Bild(er) beschreiben die elektrische Kraft richtig?

Aufgabe 12

Ergänze die folgende Sätze richtig mit Hilfe der in der Tabelle angegebenen Begriffe.

2-mal kleiner, 4-mal kleiner, 2-mal größer, 4- mal größer, unverändert, 9- mal kleiner, 9-mal größer, 24-mal kleiner, 24-mal größer.


- 1. Wird der Abstand zwischen zwei Ladungen halbiert, dann wird die elektrische Kraft zwischen den Ladungen
- 2. Zwischen zwei Ladungen besteht die elektrische Kraft F. Wenn der Abstand zwischen den Ladungen verdreifacht wird, wird die elektrische Kraft
- 3. Werden beide Ladungen verdoppelt, und auch der wird Abstand verdoppelt, wird die Kraft
- 4. Wird eine Ladung verdreifacht und die zweite verdoppelt und wird gleichzeitig der Abstand halbiert, dann wird die elektrische Kraft

Aufgabe 13

Ein Schüler hat eine isolierte Metallkugel durch Influenz negativ aufgeladen.

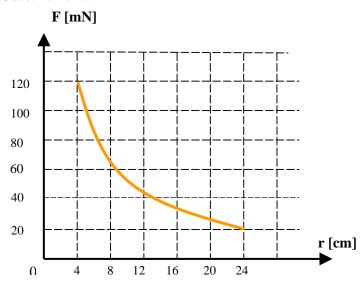
Seine Methode hat er in 5 Punkten beschrieben. Diese Punkte sind unten in falscher Reihenfolge dargestellt.

Finde die richtige Reihenfolge und zeichne schematisch in die Filmleiste die aufeinanderfolgenden Tätigkeiten des Schülers und seine Beobachtungen (jedem Punkt entspricht eine Zeichnung)

Rechenaufgaben

Aufgabe 14

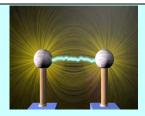
Zwei unten dargestellte, geladene, gleich große Metallkugeln wurden kurz zusammengeführt und dann voneinander entfernt. Wie groß sind die Ladungen auf den beiden Kugeln? Wie hat sich die zwischen ihnen wirkende Kraft geändert?


 $Q_1 = 4mC$

 $Q_2 = -2mC$

Ändert sich die Masse eines Gegenstands, wenn er elektrisch aufgeladen wird?

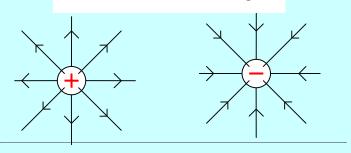
Aufgabe 16


Im elektrischen Feld einer geladenen Metallkugel hat sich eine andere, kleine, geladene Kugel bewegt. Die zwischen ihnen wirkende Kraft wurde mit einer speziellen Apparatur gemessen und dann wurde ein Graph gezeichnet, der diese Kraft als Funktion des Abstandes zwischen beiden Kugeln zeigt. Analysiere das Diagramm und erkläre, ob diese Kraft das Coulombsche Gesetz erfüllt.

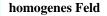
Aufgabe 17

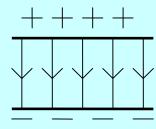
Ein Wasserstoffatom besteht aus einem Proton im Kern und einem Elektron in der Hülle. Beide tragen je die Ladung $\pm 1.6 \cdot 10^{-19}$ C. Der Radius des Atoms beträgt $0.53 \cdot 10^{-10}$ m. Mit welcher Kraft wird das Elektron vom Proton gehalten?

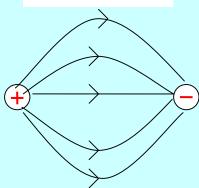
3. Das elektrische Feld, die elektrische Feldstärke


Grundwissen

3. Das elektrische Feld


In der Umgebung eines elektrisch geladenen Körpers bzw. zwischen zwei elektrisch geladenen Körpern besteht ein elektrisches Feld. Damit wird der Raum, in dem die Kräfte des geladenen Körpers wirken, festgelegt. Ein elektrisches Feld wird durch elektrische Kraftlinien oder Feldlinien dargestellt.


Je nach Verlauf der Feldlinien nennt man das Feld radial, homogen (bei parallelen Feldlinien) oder inhomogen (bei nicht parallelen Feldlinien).


Radiale Felder der Punktladungen

Feldlinien eines Dipols

Das Feld kann durch Kräfte auf Probeladungen oder durch Influenz nachgewiesen werden.

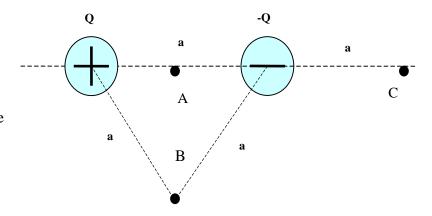
Eigenschaften

- Ladungen sind von elektrischen Feldern umgeben.
- Feldlinien beginnen an positiven Ladungen und enden an negativen Ladungen. Sie beginnen oder enden nie frei im Raum.
- In jedem Punkt des Feldes wird durch die Tangenten an die Feldlinien die Richtung der Kraft auf einen Probekörper angegeben.
- Die Feldlinien geben in jedem Punkt eines elektrischen Feldes die Richtung der auf eine positive Ladung wirkenden Kraft an.
- Die Anzahl der Feldlinien, die von einer positiven Ladung ausgehen oder auf einer negativen enden, ist proportional zur Größe der Ladung.
- Die Feldlinien überkreuzen sich nicht.

Elektrische Feldstärke E

Die elektrische Feldstärke in einem Punkt gibt an, wie groß die Kraft je Ladung in diesem Punkt ist.

$$\overrightarrow{E} = \frac{\overrightarrow{F}}{q} , \overrightarrow{F} - \text{Kraft auf einen positiv geladenen Körper, } q - \text{Ladung dieses Körpers}$$

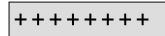

Einheiten: [E] =
$$\left[\frac{N}{C} = \frac{V}{m}\right]$$

Superpositionsprinzip

Ein von verschiedenen Ladungen erzeugtes Feld kann als Überlagerung der einzelnen Felder betrachtet werden. Die Feldstärken der einzelnen Felder addieren sich vektoriell zur Gesamtfeldstärke.

Aufgabe 18

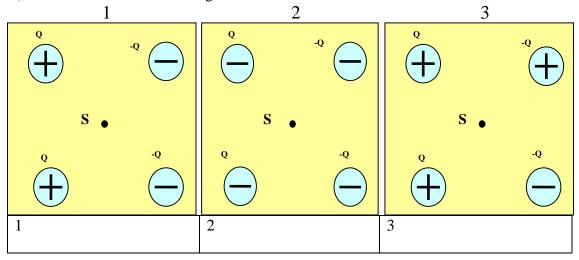
Ein elektrisches Feld wurde von zwei Punktladungen erzeugt: Q und -Q. Welche Aussagen über resultierende Feldstärken E_A, E_B, E_C in den Punkten A, B und C sind richtig und welche sind falsch?



Aussage richtig Falsch

- 1 Vektor E_A ist nach rechts gerichtet
- 2 E_A ist größer als E_c
- 3 Vektor E_B ist horizontal nach rechts gerichtet
- 4 $E_A = 0$, weil beide Feldstärken in Punkt A sich gegenseitig aufheben
- 5 Vektor E_C ist nach rechts gerichtet

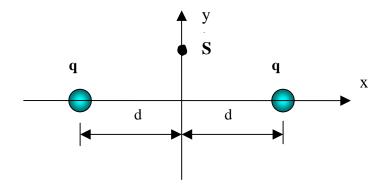
Aufgabe 19


Zeichne ein Feldlinien-Bild für eine geladene Platte, der ein neutraler Metallring gegenübersteht.

Auf der Zeichnung unten haben wir drei Anordnungen von elektrischen Ladungen, die sich in vier Ecken eines Rechteckes befinden. Ordne den bestimmten Anordnungen die entsprechende, richtige Aussage zu.

- A) Der Vektor der Feldstärke im Punkt S ist horizontal nach rechts gerichtet
- B) Der Vektor der Feldstärke im Punkt S ist die Diagonale entlang gerichtet
- C) Feldstärke im Punkt S beträgt null

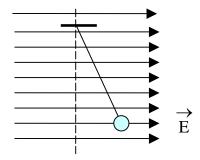
Aufgabe 21 Entscheide, welche Aussagen über elektrostatische Felder richtig und welche falsch sind? Kennzeichne richtige mit "R" und falsche mit "F".


Aussage	R/F
In einem elektrostatischen Feld stehen die Äquipotentiallinien immer senkrecht auf den Feldlinien.	
Das elektrische Potential an einem bestimmten Ort eines elektrischen Feldes macht eine Aussage über die Stärke des elektrischen Feldes an diesem Ort.	
Die Anzahl Feldlinien, die von einer ruhenden elektrischen Punktladung ausgehen, ist ein Maß für die Stärke des elektrischen Feldes.	
Der elektrische Feldvektor an einem bestimmten Ort eines elektrischen Feldes zeigt tangential zur Feldlinie, die durch diesen Ort läuft.	
Wenn alle elektrischen Feldvektoren in die gleiche Richtung zeigen, handelt es sich um ein homogenes elektrisches Feld.	
Das elektrostatische Feld zweier ruhender Punktladungen ist die vektorielle Überlagerung der Felder der einzelnen Punktladungen.	
Die Feldlinien haben keine reale Existenz, sondern dienen nur der Veranschaulichung des elektrischen Feldes.	
Um einen negativ geladenen Körper in Richtung zunehmenden Potentials zu bewegen, muss Energie aufgewendet werden.	
Die Feldstärke des elektrischen Feldes einer Punktladung nimmt quadratisch mit der Entfernung von der Punktladung ab.	

Aufgabe 22 Verbinde logisch die beiden Satzteile.

	Satzanfang		Satzende
1	In einem homogenen Feld	A	in der Umgebung einer geladenen Kugel.
2	Die Richtung der Feldlinie in einem bestimmten Punkt	В	dann gilt für die resultierende Kraft das Superpositionsprinzip.
3	Dort, wo Feldlinien dichter gezeichnet werden	C	verlaufen die Feldlinien parallel.
4	Ein radiales elektrisches Feld ensteht	D	stimmt mit der Richtung der Kraft auf einen positiv geladenen Körper überein.
5	Wirken auf einen geladenen Körper mehrere elektrische Felder,	E	ist die Feldstärke größer.

Die Abbildung zeigt zwei geladene Teilchen. Jedes der beiden Teilchen erzeugt im Punkt S auf der y-Achse ein elektrisches Feld.


- a) Sind die Beträge dieser beiden Felder im Punkt S einander gleich?
- b) Zeigen die Felder auf die sie jeweils erzeugende Ladung hin oder von ihr weg?
- c) Löschen sich die x-Komponenten der beiden Teilfelder aus oder verstärken sie sich?
- d) Löschen sich die y-Komponenten der beiden Teilfelder aus oder verstärken sie sich?
- e) Welche Richtung hat die resultierende Feldstärke?

Rechenaufgaben

Aufgabe 24

In einem homogenen elektrischen Feld hängt an einem langen, isolierenden Faden eine kleine, positiv geladene Metallkugel von der Masse $m=2\cdot 10^{-6}$ kg. Weil die Feldlinien horizontal verlaufen, wurde die Kugel aus der Lotrichtung abgelenkt (siehe Abbildung rechts).

- a) Zeichne alle Kräfte, die auf die Kugel wirken (mit Berücksichtigung eines Maßstabs).
- b) Welchen Winkel bildet der Faden zum Lotrecht, wenn die Ladung der Kugel $q = 0.5 \cdot 10^{-8}$ C und die Feldstärke E = 400N/C beträgt?
- c) Welche Momentanbeschleunigung erreicht die Kugel, wenn plötzlich die Feldstärke bis 600N/C steigt?

Aufgabe 25

Eine Kugel der Masse m = 4g hat die Ladung $Q = 1.6 \cdot 10^{-8}$ C erhalten. Welche Kraft erfährt sie dadurch im elektrischen Feld der Erde, dessen Feldstärke E = 100N/C beträgt und senkrecht nach unten gerichtet ist?

Aufgabe 26

Ein Öltröpfchen mit der Masse $3.2 \cdot 10^{-14}$ kg schwebt in einem senkrecht nach oben gerichteten elektrischen Feld, das die Feldstärke $2 \cdot 10^5$ N/C besitzt. Welche Ladung besitzt das Öltropfchen?

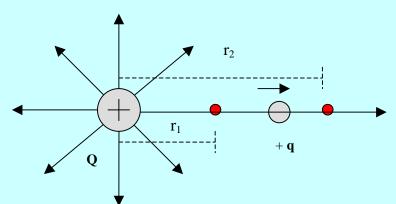
4. Arbeit und Energie im elektrostatischen Feld

Grundwissen

Bei der Verschiebung eines geladenen Körpers in Richtung der Feldlinien beträgt die im homogenen elektrischen Feld verrichtete Arbeit:

$$W = Q \cdot E \cdot r \text{ oder } W = Q \cdot U$$

Q – Ladung des Körpers


E – Feldstärke

r – Weg parallel zu den Feldlinien

U – Spannung zwischen Ausgangspunkt und Endpunkt

Im radialen Feld wird diese Verschiebungsarbeit mit folgender Formel berechnet:

$$W = kqQ \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$$

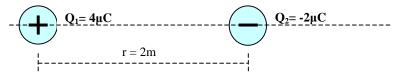
Jede Ladung q, die sich im elektrostatischen Feld befindet, besitzt eine potentielle Energie Ep

$$E_{p} = \frac{kqQ}{r}$$

r – Abstand der Ladung q vom Zentrum des Feldes

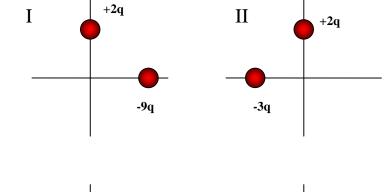
Unter dem elektrischen Potenzial V eines Punktes in einem elektrischen Feld versteht man den Quotienten aus der potenziellen Energie des Körpers im Feld und der Ladung dieses Körpers:

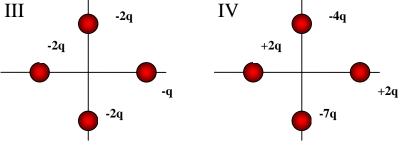
$$V = \frac{E_p}{q} = \frac{kQ}{r}$$
 [V] = [$\frac{J}{C}$ = V], Einheit – 1 Volt


Die elektrische Spannung zwischen zwei Punkten eines elektrischen Feldes ist gleich der Potentialdifferenz.

$$U = V_2 - V_1$$
 V_1 - Potential im Punkt 1 V_2 - Potential im Punkt 2

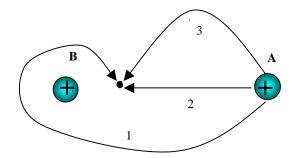
Rechen- und Testaufgaben


Aufgabe 27


- a) Wie viel beträgt das elektrostatische Potenzial in der Mitte zwischen den beiden unten dargestellten Ladungen?
- b) Finde auf der Geraden, auf der beide Ladungen liegen, einen Punkt in dem elektrostatischen Potenzial V=0.
- c) Wie ändert sich die potentielle Energie des Systems, wenn sich der Abstand zwischen den Ladungen auf $r_1 = 1$ m verkleinert?

Aufgabe 28

Die Abbildung zeigt vier verschiedene Anordnungen geladener Teilchen, wobei der Abstand aller Teilchen vom Koordinatenursprung gleich sei. Ordne die Ladungskonfiguration nach dem jeweils im Ursprung erzeugten, resultierenden elektrischen Potenzial (mit Vorzeichen).



Aufgabe 29

Die Abbildung zeigt drei Wege, auf welchen man die positiv geladene Kugel A näher an die ebenfalls positiv geladene Kugel bringen kann.

- (a) Bewegt sich die Kugel A dabei auf ein höheres oder niedrigeres elektrisches Potenzial?
- (b) Ist die Arbeit der (äußeren) Kraft, mit der man die Kugel auf den Wegen hält, jeweils positiv, negativ oder null?
- (c) Ordne die drei Fälle nach der Größe der von außen verrichteten Arbeit.

Ein geladener Wattebausch ($q = 8\mu C$; m = 40g) wird im Vakuum durch Spannung U = 20 000V beschleunigt. Welche Geschwindigkeit erreicht er, wenn er sich zu Beginn in Ruhe befand?

Aufgabe 31

Finde die richtigen Aussagen zum Elektrischen Potential:

- 1. Das elektrische Potential ... a. ist die elektrische Potentialdifferenz zwischen zwei Punkten im elektr.Feld.
- 2. Die elektrische Spannung ... $b_{\cdot} = 1 \text{ Volt}$ 3. Einheit der elektr. Spannung ... c. = 1 V/m
- 4. Einheit der elektr. Feldgradstärke ... d. ist die Arbeit, um eine Ladung an einen Ort im elektr.Feld zu bringen.
- A. b,c,d,a; B. b,d,a,c; C. d,c,a,b; D. d,a,b,c;

Aufgabe 32

Finde die richtigen Aussagen zur Wirkung Elektrischer Felder:

- 1. Elektrische Verschiebungsströme
- 2. Dielektrische Polarisation.... 3. Feldlinien verlaufen
- 4. Äquipotentiallinien verbinden
- a. wird durch elektrische Felder in Isolatoren hervorgerufen.
- b. in Richtung der elektr. Feldstärke.
- c. Orte gleichen Potentials.
- d. werden durch elektrische Felder in Leitern hervorgerufen.
- C. d,c,a,b; A. b,c,d,a; B. b,d,a,c; D. d,a,b,c;

5. Geladene Teilchen im homogenen elektrostatischen Feld

Grundwissen

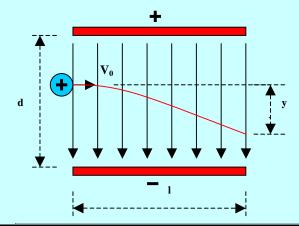
1. Geladene Teilchen in homogenen Längsfeld

Befindet sich ein geladenes Teilchen in einem homogenen elektrischen Feld, dann wirkt auf es eine konstante Feldkraft mit dem Betrag $F = q \cdot E$. Diese Feldkraft verursacht eine gleichmäßig beschleunigte, geradlinige Bewegung des Teilchens entlang der Feldlinien. Dabei wird die Feldenergie des Teilchens in kinetische Energie umgewandelt. Beträgt die Beschleunigungsspannung zwischen zwei Punkten des elektrisches Feldes U, so gilt:

$$q \cdot U = \frac{m \cdot v^2}{2}$$

2. Geladene Teilchen im homogenen Querfeld

Wenn ein geladenes Teilchen in ein homogenes elektrisches Querfeld


Eintritt, dann wird es in diesem Feld aus der ursprünglichen Richtung abgelenkt. Das Teilchen bewegt sich auf einer parabelförmigen Bahn. Innerhalb des Feldes überlagert sich eine gleichförmige Bewegung in x – Richtung mit einer gleichmäßig beschleunigten Bewegung in

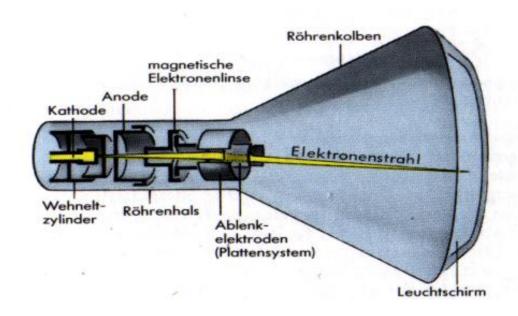
y – Richtung. Für die Bewegung des Teilchens gelten folgende Gleichungen:

1)
$$x = v \cdot t$$
 und
2) $y = \frac{1}{2}at^2 = \frac{1}{2}\frac{qE}{m}t^2 = \frac{1}{2}\frac{qU}{md}t^2$

Aus dieser Gleichung kann man die Formel für die Ablenkung y des Teilchens finden:

$$y = \frac{1}{2} \frac{qU}{md} \frac{1^2}{v_0^2}$$

Aufgabe 33 Lies den Text vor und beantworte die Fragen.


Spannungsquelle.

Die Braunsche Röhre ist ein tricherförmiges evakuiertes Glasrohr. Es enthält im Innern eine "Elektronenkanone", ein Ablenksystem und einen Leuchtschirm. Die Elektronenkanone besteht aus einem Heizdraht und einem Wehneltzylinder (der den Heizdraht umschließt und einer Lochblende). Der Heizdraht ist an der Kathode (Minuspol) einer Hochspannungsquelle angeschlossen, die Lochblende ist mit der Anode (Pluspol) verbunden. Der Heizdraht ist noch an einer weitern Spannungsquelle angeschlossen, die dazu dient den Draht zu erhitzen. Der

Zylinder schließt den Stromkreis durch eine Verbindung zu dem negativen Pol derselben

Durch das Erhitzten treten (negative) Elektronen aus der Glühkathode aus. Sie werden zur positiven Lochblende (Anode) hin beschleunigt und passieren sie als dünner Elektronenstrahl. Durch Ablenkelektroden (Plattensystem) kann die Richtung des Elektronenstrahls verändert werden. Das Plattensystem besteht aus zwei Plattenpaaren, die sich rechtwinklig gegenüber stehen. Liegt an jeweils einem Plattenpaar eine elektrische Spannung an, dann wird der Elektronenstrahl von der negativen Platte weg zur positiven Platten hin abgelenkt.

Treffen die Elektronen auf dem Leuchtschirm auf, so erzeugen sie in einer fluoreszierenden Farbschicht einen Lichtfleck.

	o in der Braunschen Röhre haben wir es mit einer Ablenkung der geladenen Teilchen i ektrischen Feld zu tun?	m
	as verursacht, dass die Elektronen die Katode verlassen?	
•••		

c) Wie ist das Ablenkungssystem aufgebaut?		
d) Wie bewegen sich Elektronen zwischen der Katode und	der Anode?	
		••••••
Aufgabe 34 Welche Beschleunigung erhält eine kleine Alukugel der Mader Ladung $Q=2.0\cdot 10-9~C$ in einem elektrischen Feld der		
Aufgabe 35	_	
Auf eine positive Probeladung Q wirkt im Punkt P	P •	
aufgrund der positiven Ladung Q_1 eine Kraft $F_1 = 4.0 \times 10^{-3} \text{N}$. Die negative Ladung Q_2 wirkt		
auf Q mit einer Kraft $F_2 = 2.0 \times 10^{-3} \text{N}$.		
a) Welche Kraft F wirkt auf die Probeladung im		
Gesamtfeld? Angabe von Betrag und Richtung		_
in einer Skizze. b) Welche Richtung hat die elektrische Feldlinie bei P?	$\mathbf{P} \mathbf{Q}_1$	
b) Welche Richtung hat the elektrische Feitilline bei F?		

6. Kondensatoren

Dielektrikum <i>n</i>	
Kapazität <i>f</i>	
Permittivitätszahl f	
Reihenschaltung f	
Parallelschaltung <i>f</i>	
speichern	-

Grundwissen

Kondensatoren sind Bauelemente, die elektrische Ladungen bzw. elektrische Energie speichern können.

Die einfachste Form eines Kondensators besteht aus zwei gegenüberliegenden Metallplatten. Dazwischen befindet sich ein Dielektrikum, welches keine elektrische Verbindung zwischen den Metallplatten zulässt. Das Dielektrikum ist als Isolator zu verstehen.

Legt man an einen Kondensator eine Spannung an, so entsteht zwischen den beiden metallischen Platten ein elektrisches Feld. Eine Platte nimmt positive, die andere Platte negative Ladungsträger auf.

Die Kapazität C eines Kondensators gibt an, wie viel elektrische Ladung der Kondensator bei einer Spannung von 1V speichern kann.

$$C = \frac{Q}{U}$$
, $Q - \text{elektrische Ladung}$, $U - \text{elektrische Spannung}$

Einheit der Kapazität ist 1 Farad (1F)

Plattenkondesator

Bei einem Plattenkondensator ist die Kapazität umso größer, je größer die Flächen der Platten und je kleiner der Abstand zwischen ihnen ist.

Die Kapazität eines Plattenkondensators kann mit folgender Formel berechnet werden:

$$C = \frac{\epsilon_0 \epsilon_r S}{d} \quad , \quad S - \text{Fläche einer Platte}, \ \epsilon_0 - \text{elektrische Feldkonstante}$$

d – Abstand der Platten, ε_r – Permittivitätszahl

Die in einem Kondensator gespeicherte Energie E kann mit folgenden Formeln berechnet werden:

$$E = \frac{1}{2}Q \cdot U$$
, $E = \frac{Q^2}{2C}$, $E = \frac{1}{2}C \cdot U^2$

Kondensator mit Dielektrikum

Wenn das Innere des Kondensators vollständig mit einem Isolator (Dielektrikum) ausgefüllt wird, dann erhöht sich die Kapazität des Kondensators ε_r – mal.

23

In der unten stehenden Tabelle wurden die 6 Eigenschaften der Schaltungen von den Kondensatoren gesammelt. Sie wurden mit Hilfe von Formeln aufgeschrieben.

Schreibe diese für Kondesatorschaltungen geltenden Formeln in Worten auf wie im Beispiel:

1.	Bei	der	Serie	nschaltung	der	Konden	satoren	ist	die	Gesamtsp	pannung	gleich	der	Summe	der
T_{ϵ}	eilsp	annı	ungen												

2	 •••••	

Serienschaltung von Kondensatoren	Parallelschaltung von Kondesatoren
C ₁ C ₂ C ₃ C _n	C_1 C_2 C_3 C_n U

$$U = U_1 + U_2 + ... + U_n$$

$$Q = Q_1 = Q_2 = \ Q_3 = \ ... = Q_n$$

$$\begin{split} U &= U_1 + U_2 + ... + U_n \\ Q &= Q_1 = Q_2 = \ Q_3 = \ ... = Q_n \\ \\ \frac{1}{C_G} &= \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + + \frac{1}{C_n} \end{split}$$

$$U_1 = U_2 = ... = U_n = U$$

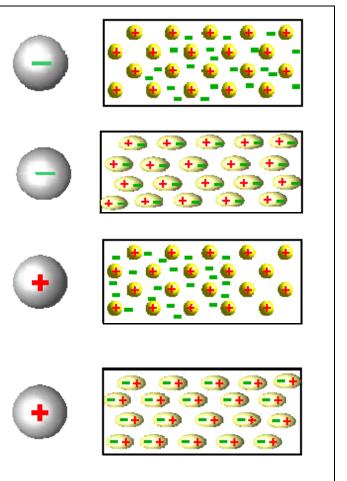
$$Q = Q_1 + Q_2 + Q_3 + ... + Q_n$$

$$Q_G = C_1 + C_2 + C_3 + ... + C_n$$

Aufgabe 37 Verbinde logisch die beiden Satzteile!

	Satzanfang		Satzende	
1	Bei der Parallelschaltung von Kondensatoren	A	gleich der Summe der Kehrwerte der	
			Einzelkapazitäten.	
2	Bringt man einen Isolator in das elektrische	В	ist die Ersatzkapazität gleich der	
	Feld eines Kondensators,		Summe der einzelnen Kapazitäten.	
3	Die Kapazität eines Kondensators ist um so	C	ist zum Abstand zwischen den Platten	
	größer,		umgekehrt proportional	
4	Bei einer Reihenschaltung ist der Kehrwert	D	je größer die Fläche der	
	der Ersatzkapazität		Kondensatorsplatten ist.	
5	Die Kapazität eines Kondensators	E	so sinkt bei konstanter Ladung die	
			Spannung zwischen den Platten.	

Aufgabe 38

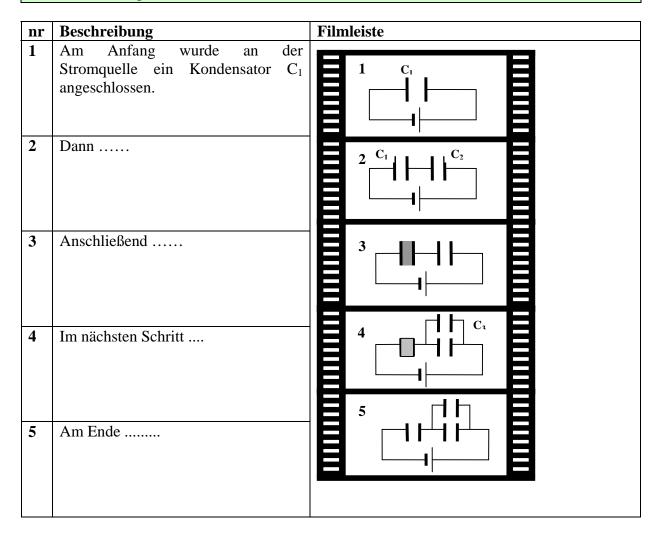

Unten hast Du eine genaue Beschreibung der zwei Erscheinungen im elektrischen Feld: der Influenz und der Polarisation. Entscheide, welche Zeichnungen Polarisation und welche Influenz darstellen.

Die Influenz

Bringt man einen geladenen Körper in die Nähe eines (neutralen) Metallstücks, so werden die beweglichen Elektronen im Metall unter der Wirkung der von außen ausgeübten elektrischen Kräfte verschoben. Es entsteht also ein Bereich, in dem die negative Ladung der Elektronen überwiegt, und ein Bereich, in dem die nun nicht mehr kompensierte Ladung der positiven Atomrümpfe überwiegt.

Die Polarisation

Die Polarisation lässt sich so deuten, dass es unter der Wirkung äußerer elektrischer Kräfte einer zu Verschiebung der Elektronen in der Atomhülle kommt. Dadurch entstehen atomare Dipole, bei denen die positiven negativen Ladungsschwerpunkte räumlich voneinander getrennt sind. Im Innern eines Isolators kompensieren sich ungleichen Ladungen; Oberfläche jedoch überwiegen Ladungen jeweils eines Vorzeichens, so dass der Isolator geladen erscheint.


Auf dem Bild siehst Du drei unterschiedliche Schaltungen von Kondensatoren. Alle Kondensatoren haben gleiche Kapazitäten. Ergänze richtig folgende Schlussfolgerungen über ihre Kapazitäten.

- 1. Die Kapazität der Schaltung I ist kleiner als die Kapazität der Schaltung
- 2. Schaltung hat eine viermal so große Kapazität wie Schaltung
- 3. Schaltung II hatKapazität wie Schaltung III

Aufgabe 40

Ein Lehrer baute eine Schaltung von drei Kondensatoren mit der Kapazitäten C_1 , C_2 und C_3 . Die unten dargestellte Filmleiste zeigt aufeinanderfolgende Bauphasen. Beschreibe in Punkten alle diese Phasen. Verwende bei der Beschreibung folgenden Fachwortschatz:

an der Stromquelle anschließen, in Reihe schalten, parallel schalten, mit einem Dielektrikum ausfüllen, die Kapazität

Rechen- und Testaufgaben

Aufgabe 41

Zwei Plattenkondensatoren mit einer Kapazität von 2 μ F werden parallel geschaltet und mit einer Spannungsquelle von 12 V verbunden.

- a) Wie groß ist die auf jedem Kondensator gespeicherte Ladung?
- b) Wie groß ist die in beiden zusammen gespeicherte Energie?

Die Kondensatoren werden von der Spannungsquelle getrennt, und es wird ein Dielektrikum der Dielektrizitätszahl $\varepsilon_r = 3$ in einen der beiden Kondensatoren eingeführt.

- c) Wie groß ist jetzt die Spannung an den einzelnen Kondensatoren?
- d) Wie groß ist die Ladung auf den einzelnen Kondensatoren?
- e) Wie groß ist die gesamte in beiden gespeicherte Energie?

Aufgabe 42

Die Kapazität eines Plattenkondensators hängt ab von

- (1) der Fläche der Platten
- (2) dem Abstand der Platten voneinander
- (3) der Dielektrizitätskonstante des Materials zwischen den Platten
- (4) dem Wert der zwischen den Platten angelegten elektrischen Spannung
 - (A) nur 1, 2 und 3 sind richtig
 - (B) nur 1, 2 und 4 sind richtig
 - (C) nur 1, 3 und 4 sind richtig
 - (D) nur 2, 3 und 4 sind richtig
 - (E) alle sind richtig

Aufgabe 43

Ein Plattenkondensator wird mit einer Spannungsquelle auf U = 10 V aufgeladen. Er wird von der Spannungsquelle getrennt, und dann werden die Kondensatorplatten auf den doppelten Abstand gebracht. Dabei ändert sich die Spannung bzw. die Ladung wie folgt:

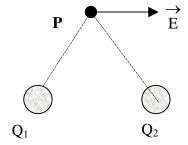
- (A) Ladung und Spannung ändern sich nicht
- (B) die Spannung steigt auf den Wert U = 20 V
- (C) die Spannung sinkt auf den Wert U = 5 V
- (D) die Ladung steigt auf den doppelten Wert
- (E) die Ladung sinkt auf den halben Wert

Aufgabe 44

Wie viele $1\mu F$ Kondensatoren brauchst du mindestens, um bei einer Spannung von 10 V eine Gesamtladung von 1 mC speichern zu können? Wie müssen die Kondensatoren in diesem Fall geschaltet sein?

Aufgabe 45

Ein geladenes Staubteilchen mit einer Masse von 1,5·10⁻¹¹ kg schwebt im Feld eines Plattenkondensators, an den eine Spannung von 500 V angelegt wird. Die Platten sind horizontal in einem Abstand von 5,0 mm angeordnet. Berechne die Ladung des Staubteilchens.


7. Weiß ich das schon? Fragen und Aufgaben zur Elektrostatik

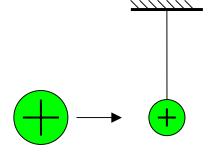
Test

Aufgabe 46 Werden zwei identische Kondensatoren in Serie geschaltet, so ist die Ersatzkapazität				
A) halb so groß	B) doppelt so groß	C) dreimal so groß	D) gleich groß	
Aufgabe 47 Ein Glasstab wird durch Reibung positiv aufgeladen. Der Glasstab wurde positiv aufgeladen weil er:				
A) Elektrone C) Elektrone	n dazu bekam n verlor	B) Protonen dazu beD) Protonen verlor	kam	
Aufgabe 48 Ein Stab wird in die Nähe eines neutralen Elektroskops gebracht und der Zeiger schlägt aus. Welche Aussage gilt für die Ladung des Stabes? A) er muss positiv geladen sein B) er muss negativ geladen sein C) er kann neutral sein D) er kann positiv oder negativ geladen sein				
Aufgabe 49 Zunächst wird ein Kondensator aufgeladen und dann über einer Glühbirne entladen. Die Helligkeit des Aufleuchtens ist ein qualitatives Maß für die abfließende Ladung. Jetzt lädt man zwei hintereinander geschaltete Kondensatoren auf. Bei Entladung brennt die Birne A) schwächer B) stärker C) genauso wie früher D) nicht				
Aufgabe 50 In einem Punkt eines homogenen elektrostatischen Feldes befindet sich ein Teilchen mit der Ladung $q=2nC$. In diesem Punkt wirkt auf das Teilchen eine Kraft $F=4\mu N$. Daraus kann man schließen, dass die Feldstärke E: A) 200 V/m B) 2000 V/m C) 500 V/m D) 5000 V/m beträgt.				
Aufgabe 51 Die Kapazitäten von drei hintereinander geschalteten Kondensatoren verhalten sich wie 1:2:3. Das ganze System wird auf die Spannung U aufgeladen. In welchem Verhältnis stehen die Spannungen der Kondensatoren? A) 1:1:1 B) 1: 1/2: 1/3 C) 3:2:1 D) 1: 2: 1				

Zwei Ladungen erzeugen ein elektrisches Feld, dessen resultierende Feldstärke E im Punkt P so gerichtet ist wie in der Abbildung unten. Daraus kann man schließen, dass

- A) beide Ladungen positiv sind,
- B) beide Ladungen negativ sind,
- C) Ladung Q₁ ist positiv und Ladung Q₂ negativ ist,
- D) Ladung Q₂ ist positiv und Ladung Q₁ negativ ist.

Aufgabe 53

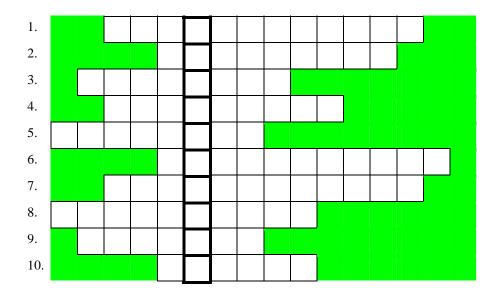

Drei Kondensatoren mit gleichen Kapazitäten (C=10nF) wurden zum Aufbau einer Schaltung verwendet. Es hat sich herausgestellt, dass die Gesamtkapazität der Schaltung 15nF beträgt. Wie wurden die Kondensatoren miteinander geschaltet?

- a) alle parallel
- b) alle in Reihe
- c) zwei in Reihe und der dritte parallel zu den beiden
- d) zwei parallel, einer in Reihe

Aufgabe 54

Was macht das kleine positiv geladene Kügelchen, wenn man die große, positiv geladene Kugel sich etwas mehr von links her nähert?

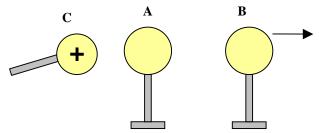
- a) Es bewegt sich nach links.
- b) Es bewegt sich nicht weiter.
- c) Es bewegt sich in etwa gleichem Abstand vor der Kugel her nach rechts.
- d) Es geht nach rechts und vergrößert den Abstand zur Kugel.


Aufgabe 55

Wie ändert sich die elektrostatische Kraft zwischen zwei Punktladungen, wenn sich der Abstand zwischen ihnen dreimal verkleinert?

- a) Kraft wird 3-mal kleiner.
- b) Kraft wird 3-mal größer.
- c) Kraft wird 9-mal kleiner.
- d) Kraft wird 9-mal größer.

Finde die Lösung des Rätsels.


- 1. Elektroskop, das mit einer Skala versehen wird;
- 2. Skalare Größe, die ein elektrostatisches Feld beschreibt;
- 3. Herrscht zwischen zwei Platten des Kondensators;
- 4. Fängt immer an der positiven Ladung an;
- 5. Ladungstrennung in den Leitern;
- 6. Gerät zum Sichtbarmachen elektrischer Wechselspannungen;
- 7. Ladungsverschiebung in den Isolatoren;
- 8. Vektorielle Größe, die elektrostatische Felder beschreibt;
- 9. Einheit der elektrischen Ladung;
- 10. Träger der positiven Ladung;

Aufgabe 57

Zwei neutrale Metallkugeln A und B auf einem Isolierstiel berühren sich. Eine positiv geladene (+) Metallkugel C wird nun angenähert (ohne Berührung). Siehe Skizze!

Die Kugel B wird nach rechts geschoben, so dass sich nun A und B nicht mehr berühren, danach erst wird Kugel C wieder entfernt. Welchen Ladungszustand haben A und B? Begründe deine Antwort!

Aufgabe 58

In den Ecken eines gleichseitigen Dreiecks von a = 10cm Seitenlänge befinden sich die Ladungen $Q_1 = +1\mu\text{C}$, $Q_2 = +1\mu\text{C}$ und $Q_3 = -3\text{C}$. Berechne den Betrag der resultierenden Kraft, mit der Q_1 und Q_2 auf Q_3 wirken.

Ein Plattenkondensator besteht aus zwei jeweils 1m² großen Metallplatten im Abstand von 1 mm.

- a) Wie groß ist die Kapazität des Kondensators, wenn das Volumen zwischen den Platten mit Luft gefüllt ist?
- b) Am Kondensator fällt eine Spannung von 10V ab. Wie groß ist die auf einer Kondensatorplatte gespeicherte Ladung? Wie groß ist die im Kondensator gespeicherte Energie?
- c) Das Volumen zwischen den Platten ist nun vollständig mit einem Dielektrikum mit ϵ_r =24 ausgefüllt. Wie groß ist nun die Kapazität, wie groß die auf einer Platte gespeicherte Ladung, wenn eine Spannung von 10V anliegt?

II. Magnetismus

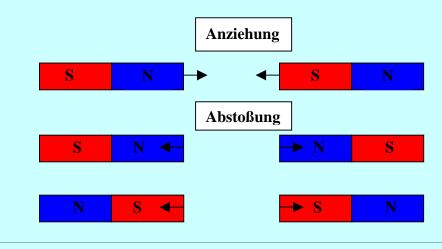
1. Magnete und ihre Wirkungen

gleichnamig	
ungleichnamig	
Stabmagnet <i>m</i>	
Hufeisenmagnet m	
durchdringen	

Grundwissen

Zwischen einem Magneten und Körpern, die Eisen, Kobalt oder Nickel enthalten, treten Anziehungskräfte auf.

Alle Stoffe, die sich wie Eisen verhalten, heißen ferromagnetische Stoffe.

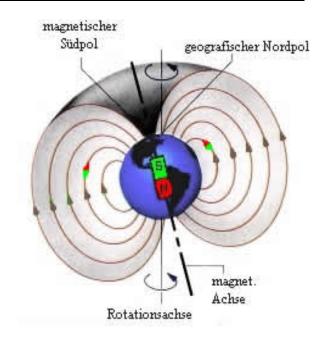

Magneten durchdringen mit ihren Wirkungen alle Körper, die nicht aus ferromagnetischen Stoffen bestehen.

Körper von Eisen, Nickel oder Kobalt werden von Magneten magnetisiert.

Jeder Magnet hat zwei Pole. An ihnen ist die magnetische Wirkung am größten.

Jeder Magnet hat einen Nordpol und einen Südpol.

Ungleichnamige Pole ziehen einander an, gleichnamige Pole stoßen einander ab.

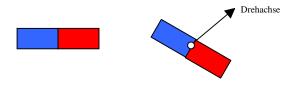

Ein Schüler hat ein paar Aussagen über magnetische Eigenschaften der Materie formuliert. Kreuze die richtigen Aussagen an. Korrigiere die falschen Aussagen und schreibe sie richtig unter der Tabelle auf.

Aussage	R	F
Jeder Magnet besitzt einen Pluspol und einen Minuspol.		
MC TELC 1 TH		
Mit Hilfe des Elementarmagnete-Modells kann man Magnetiesierung erklären		
Bei einem Magneten gibt es zwei gleichnamige Pole.		
Magnete ziehen Gegenstände aus magnetischen Materialien (Eisen, Nickel,		
Kobalt) an, andere jedoch nicht.		
Pole ziehen sich gegenseitig an. Das bedeutet, der Nordpol zieht den		
Nordpol an und der Südpol zieht den Südpol an.		
Es ist normal, dass alle Metalle magnetisch sind.		
Bei den Elektromagneten können Nord- und Südpol durch Änderung der		
Stromrichtung vertauscht werden.		

Aufgabe 61 (Lückentext) "Magnetfeld der Erde" Lies den Text und trage in die leeren Felder die folgenden Wörter richtig ein!

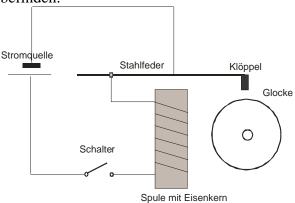
Erdrotation, umgeben, Schweif, flüssigem, Sonnenwind, strömen, Stabmagneten, treten, weichen, All, schützende, Stromquelle, Teilchen, Magnetfeld, Inneren, sinken

Das Magnetfeld der Erde entsteht im der Erde. Dort befindet sich der Im Wesentlichen setzt er sich aus Eisen zusammen. Der innere feste Kern ist von einer äußeren Schale ausEisen. Durch die Hitze des inneren Kerns die Metalle zur Kernoberfläche, kühlen sich dabei ab undwieder nach unten. Gleichzeitig fließen sie wegen derin schraubenförmigen Bahnen. Die Bewegungen des elektrisch gut leitenden Eisens lassen eineentstehen, ähnlich einem gigantischen Dynamo. Und immer wenn elektrischer Strom fließt. bildet sich auch ein Magnetfeld.


Aufgabe 62

Während des Physikunterrichts wurden zwei Experimente mit Magneten durchgeführt. In dem ersten wurde der Stabmagnet dem Magnetwägelchen genähert.

In dem zweiten wurde der Stabmagnet dem rechts drehbar gelagerten Stabmagneten genähert. Die Schüler haben zum Verlauf jedes Experimentes je 3 Vorhersagen aufgeschrieben. Entscheide, welche Vorhersagen richtig waren.



- 1) Das Wägelchen bewegt sich vom Stabmagneten weg.
- 2) Das Wägelchen bewegt sich auf den Stabmagneten zu.
- 3) Das Wägelchen zeigt keine Reaktion und bleibt stehen.

- 1) Der rechte drehbare Magnet ändert seine Lage nicht.
- 2) Der rechte drehbare Magnet dreht dem linken Magneten die rote Seite zu.
- 3) Der rechte drehbare Magnet dreht dem linken Magneten die blaue Seite zu.

Auf der Abbildung wird das Schema von einer Türglocke dargestellt. Beschreibe die Funktionsweise dieser Anordnung. Verwende die Wörter und Redewendungen, die sich unten befinden.

Stromkreis geschlossen,
Elektromagnet aus,
Blattfeder öffnet den Stromkreis,
Stromkreis geschlossen,
Elektromagnet zieht an,
Schalter schließen,
Blattfeder schwingt zurück,
der Kreislauf beginnt von neuem.

Aufgabe 64
Lies den Text und trage in die leeren Felder die folgenden Wörter richtig ein.

Strom wieder ein, kehrt auch die Magnetkraft wieder zurück.

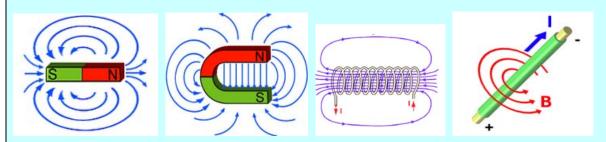
Eisennagel	Elektromagnet	Elektronen	Magnetfeld	Minuspol	
	Pli	uspol Strom			

Aufgabe 65Welche Beschreibung betrifft ferromagnetische, paramagnetische oder diamagnetische Stoffe?

Beschreibung	Stoff
Diese Stoffe werden von magnetischen Polen schwach	
abgestoßen. Die Permeabilitätszahl dieser Stoffe $\mu_r < 1$.	
Wenn man den Innenraum der Spule mit diesem Stoff	
ausfüllt, wird die Spule zum starken Elektromagneten.	
Zu diesen Materialien gehören Eisen, Nickel und Kobalt.	
Diese Stoffe werden von magnetischen Polen schwach	
angezogen. Wenn sie sich im Inneren der Spule befinden,	
verstärken sie das magnetisches Feld nur wenig.	

2. Das Magnetische Feld

Stromdurchflossener Leiter	
veranschaulichen	
Flussdichte <i>f</i>	


Grundwissen

Ein magnetisches Feld wird immer dann verursacht, wenn elektrische Ladungen bewegt werden, wenn also elektrische Ströme fließen. Die magnetische Felder veranschaulicht man mit Hilfe von Feldlinien.

Die Pfeilrichtung der magnetischen Feldlinien gibt die Richtung der Kraft auf den Nordpol eines Magneten an.

Typische Magnetische Felder:

a) Stabmagnet b)Hufeisenmagnet c) Stromdurchflossene Spule d) Stromdurchflossener Leiter

Die Flussdichte im Abstand r vom Stromdurchflossenen Leiter kann man mit folgender Formel berechnen:

$$B = \mu_0 \frac{I}{2\pi r}$$

I – Stromstärke im Leiter

 μ_0 – magnetische Feldkonstante

Für die Flussdichte im Inneren einer langen Spule gilt:

$$B = \mu_0 \frac{I \cdot n}{1}$$

n – Zahl der Windungen

1 – Länge der Spule

Kennzeichne die richtigen Aussagen über das Magnetfeld mit einem Kreuz.

Aussage	R	F
Die Pfeilrichtung der magnetischen Feldlinien gibt die Richtung der Kraft auf den		
Südpol eines Magneten an.		
Die Feldlinien von magnetischen Feldern können sich kreuzen.		
Ein elektrischer Strom erzeugt ein Magnetfeld, dessen Feldlinien den Leiter		
ringförmig umgeben.		
Die Feldlinien magnetischer Felder sind stets geschlossen.		
Das Magnetfeld, das außerhalb der Spule entsteht, entspricht dem Feld eines		
Stabmagneten.		
Im homogenen Magnetfeld haben die Vektoren der Flussdichte gleiche Werte,		
aber unterschiedliche Richtungen.		

Aufgabe 67

Ein geradliniger Leiter von der Länge d befindet sich in einem homogenen Magnetfeld der Flussdichte B. Der Leiter steht senkrecht zu den Feldlinien. Die auf ihn wirkende elektrodynamische Kraft beträgt 2N. Auf den zweiten geradlinigen stromdurchflossenen Leiter wird in demselben Magnetischen Feld eine Kraft von 6N ausgeübt. Wähle die Wörter aus den Klammern so, dass die physikalich richtige Aussagen entstehen.

- 1) Die Stromstärke in dem zweiten Leiter (*dreimal kleiner*, *dreimal größer wird*) unter der Annahme, dass seine Länge (*dreimal kleiner ist, gleich groß ist*)
- 2) Die Länge des zweiten Leiters (gleich groß ist, zweimal kleiner ist) und die Stromstärke (gleich groß ist, sechsmal größer wird)
- 3) (In beiden Leitern die Stromstärke gleich groß ist) , aber die Länge des zweiten Leiters (dreimal kleiner, dreimal größer) ist.

Rechenaufgaben

Aufgabe 68

Die Flussdichte des homogenen Magnetfeldes im Inneren einer stromführenden Spule von 50cm Länge und 2000 Windungen soll den Wert 10⁻² T erhalten. Welche Stromstärke ist erforderlich?

Aufgabe 69

Zwei geradlinige Leiter der Länge d = 5m verlaufen in einem Abstand von 5cm parallel zueinander. Dabei werden die Leiter in entgegengesetzter Richtung von den Strömen $I_1 = 5A$ und $I_2 = 15A$ durchflossen. Berechne die magnetische Flussdichte in allen Punkten, die

- a) von den beiden Leitern gleich entfernt sind,
- b) 4cm von dem Leiter mit dem Strom I₁ entfernt sind.
- c) In welchen Punkten ist die magnetische Flussdichte gleich Null?

Aufgabe 70

Zwei Spulen (I) und (II) sind vom gleichen Strom durchflossen. Die Spule I hat 300 Windungen. Ihre Länge ist fünfmal so groß wie die der Spule II.

Die magnetische Flussdichte im Inneren der Spule I ist dreimal so groß wie in der Spule II. Berechne die Windungszahl der Spule (B).

3. Kräfte auf stromdurchlossene Leiter und bewegte Ladungen

bestimmen	
Drei-Finger-Regel f	
elektrodynamische Kraft f	
entgegengesetzt	
Lorentzkraft f	
Teilchen n	
Zeichenebene f	

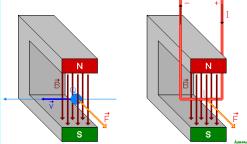
Grundwissen

Ein stromdurchflossener Leiter erfährt in einem Magnetfeld eine Kraft. Sie wirkt senkrecht zum Leiter und senkrecht zum Magnetfeld. Diese Kraft nennt man elektrodynamische Kraft und sie kann mit folgender Formel berechnet werden:

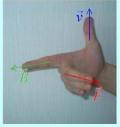
$$\overrightarrow{F}_{e} = I \left(\overrightarrow{1} \times \overrightarrow{B} \right) \text{ oder in skalaren Form: } F_{e} = B \cdot I \cdot 1 \cdot \sin \alpha ,$$

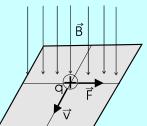
B – magnetische Flussdichte, I – Stromstärke

1 – Länge der Leiter


α – Winkel zwischen Leiter und Vektor der Flussdichte B.

Auf das bewegte geladene Teilchen (z.B. Elektronen, Protonen, Ionen) wirkt im homogenen Magnetfeld B die konstante Lorentzkraft:


$$\overrightarrow{F_L} = q \left(\overrightarrow{v} \times \overrightarrow{B} \right)$$

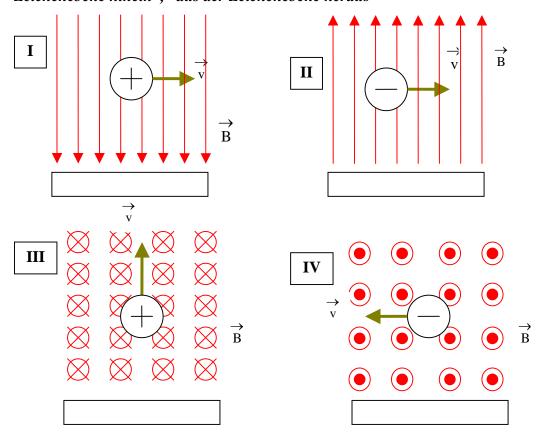

q – Ladung, v – Geschwindigkeit des geladenen Teilchen, B – magnetische Flussdichte.

Die Kraft F_L wirkt stets senkrecht auf den Vektor der Geschwindigkeit v der geladenen Teilchen und senkrecht auf den Vektor der Flussdichte.

Die Richtung der Lorentzkraft kann man mit Hilfe der "Drei-Finger-Regel" der rechten Hand bestimmen.

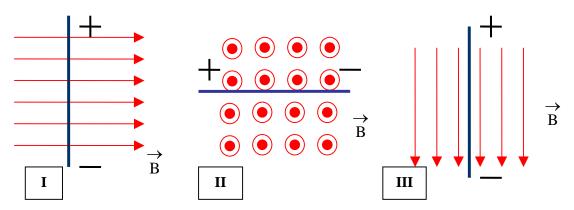
Rechte-Hand-Regel

Zeigt der Daumen in Richtung des Geschwindigkeitsvektors eines geladenen Teilchens und der Zeigefinger in Richtung der magnetischen Feldstärke, dann zeigt der Mittelfinger unter Berücksichtigung des Vorzeichens der Ladung q in Richtung der Lorentz-Kraft.


38

Entscheide, welche Aussagen über Kräfte im Magnetischen Feld richtig sind und welche falsch? Kennzeichne richtige mit "R" und falsche mit "F".

Aussage	R/F
Bewegt sich ein elektrischer Ladungsträger parallel zur Magnetfeldrichtung,	
wird er durch die Lorentzkraft abgelenkt.	
Die Lorentzkraft steht senkrecht auf der Ebene, die aus der Richtung der	
Teilchengeschwindigkeit und dem Magnetfeld aufgespannt wird.	
Auf ruhende elektrische Ladungen wirkt im homogenen magnetischen Feld die	
größte Lorentzkraft.	
Ein Leiter erfährt immer vom Magnetfeld des anderen Leiters eine Kraft, aber	
nie von seinem eigenen Magnetfeld.	
Wenn ein Proton senkrecht in das Magnetfeld eintritt, bewegt es sich auf einer	
kreisförmigen Bahn.	
Die Lorentzkraft ändert sowohl Richtung als auch Betrag der Geschwindigkeit	
der Teilchen.	
Die Kräfte auf positiv und negativ geladene Teilchen gleicher Ladung sind	
entgegengesetzt gerichtet, haben aber bei gleicher Geschwindigkeit und	
gleicher magnetischer Flussdichte den gleichen Betrag.	
Ein stromdurchflossener Leiter erfährt in einem Magnetfeld elektrodynamische	
Kraft, die zur Stromstärke direkt proportional ist.	


Aufgabe 72

Bestimme für alle vier Bilder die Richtung der Lorentzkraft, die auf positiv oder negativ geladene Teilchen wirkt. Vervollständige die Kästchen mit folgenden, richtig gewählten Begriffen: "nach links", "nach rechts", "nach unten", "nach oben", "nach links", "in die Zeichenebene hinein", "aus der Zeichenebene heraus"

In den blau eingezeichneten Leitern fließt Strom. Die unten stehenden Sätze beschreiben die ablaufenden Prozesse. Zu jeder Zeichnung passen genau drei Sätze, die die physikalisch dargestellte Erscheinung richtig erklären. Ordne jeder Zeichnung die richtigen Sätze zu.

- 1. Auf den Leiter wirkt eine nach unten gerichtete Kraft.
- 2. Auf den Leiter wirkt keine Kraft.
- 3. Die Feldlinien liegen vertikal in der Zeichenebene.
- 4. Die Feldlinien laufen aus der Zeichenebene heraus.
- 5. Der elektrische Strom im Leiter fließt nach rechts.
- 6. Die Elektronen fließen entgegengesetzt zur Richtung der Feldlinien.
- 7. Die Flussdichte des magnetischen Feldes ist nach links gerichtet.
- 8. Elektronen im Leiter bewegen sich nach oben.
- 9. Auf den Leiter wirkt eine elektrodynamische Kraft, die in die Zeichenebene hinein gerichtet ist.

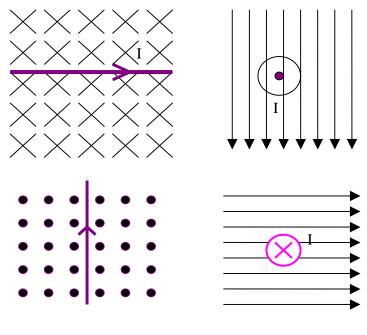
Aufgabe 74

Bringe die Wörter/Satzteile in die richtige Reihenfolge, so dass ein Satz entsteht!

Die	e Kraft	in	n Magnetfeld
und	d de	r Flussdichte des Feldes ab	wirkt
hängt vom		Strom, Länge des Leiters	die auf den Leiter
2.			
Die Lorer	ntzkräfte	auf die bewegten	in einem Leiter
auc	h	Ladungen	wirken
3.			
ein Elel	ktron durch	läuft zu den Feldlini	en wird er
	Wenn	senkrecht a	bgelenkt
4.			
Die	mit Hilfe	vorhersagen	der Kraft
lässt sich		Richtung	"Drei-Finger-Regel"
1. Satz			
2. Satz			
2. Satz			
2. Satz			

Die Bahnen der geladenen Teilchen im Magnetfeld hängen davon ab, wie ihre Geschwindigkeitsvektoren beim Eintritt in das Magnetfeld gegen die Feldlinien gerichtet sind.

Vervollständige die unten stehende Tabelle, wo alle möglichen Fälle dargestellt wurden.


Zeichnung	Richtung der Eintrittsgeschwindigkeit gegen Feldlinien	Beschreibung der Bahn
$\begin{array}{c} \times \times$	Das Teilchen tritt senkrecht zu den Feldlinien in das Magnetfeld ein.	
××××××××××××××××××××××××××××××××××××××		Das Teilchen bewegt sich auf einer spiralförmigen Bahn.
	Das Teilchen tritt parallel gegen Feldlinien in das Magnetfeld ein.	Das Teilchen bewegt sich gleichförmig, geradlinig, weil die Lorentzkraft in diesem Fall gleich Null ist.

Aufgabe 77

Unter welchen Bedingungen werden bewegte Protonen in einem zeitlich konstanten homogenen Magnetfeld

- a) nicht beeinflusst,
- b) in eine Kreisbahn gezwungen,
- c) in eine Schraubenlinie gezwungen?

Zeichne die Kraft ein, die auf einen stromdurchflossenen Leiter in allen unten dargestellten Fällen wirkt.

- B ist aus der Zeichnung Ebene
- B ist in Zeichnung Ebene hinein gerichtet

Rechenaufgben

Aufgabe 78

Elektronen treten mit der Geschwindigkeit $v = 10^7$ m/s senkrecht zu den Feldlinien in ein homogenes Magnetfeld ein. Welche Flussdichte muss das Feld haben, damit sie einen Kreis von 6cm Radius beschreiben?

Aufgabe 79

In einem homogenen Magnetfeld der Flussdichte $5\cdot 10^4$ T werden Elektronen in eine Kreisbahn von 5cm Radius gelenkt.

42

- a) Berechne die Bahngeschwindigkeit v der Elektronen.
- b) Welche Spannung ist erforderlich, um die Elektronen auf diese Bahngeschwindigkeit zu bringen?

Nimm an, dass
$$\frac{e}{m} = 1,76 \cdot 10^{11} \frac{C}{kg}$$
 beträgt.

4. Elektromagnetische Induktion

Induktionsspannung f	
Induktivität f	
magnetischer	
Fluss m	
Lenzsche Regel f	
Selbstinduktion <i>f</i>	
Widerstand <i>m</i>	

Grundwissen

Die Induktionsspannung kann auf zwei verschiedene Arten erzeugt werden:

1. Durch Relativbewegung eines Leiters der wirksamen Leiterlänge d zu einem Magnetfeld der Stärke B mit der Geschwindigkeit v senkrecht zu den magnetischen Feldlinien.

In diesem Fall gilt für die induzierte Spannung:

$$U_{\text{ind}} = B \, \cdot \, v \, \cdot \, d$$

2. Durch eine zeitliche Änderung des magnetischen Flusses durch einen geschlossenen Stromkreis.

Das Induktionsgesetz

In einer Leiterschleife oder Spule wird eine Spannung induziert, solange sich der magnetische Fluss durch die Leiterschleife oder Spule zeitlich ändert. Der Betrag der Induktionsspannung kann mit folgender Gleichung berechnet werden:

$$U_{ind} = -n \frac{\Delta \Phi}{\Delta t}$$

n – Windungszahl der Spule

 $\Delta\Phi$ – Änderung des magnetischen Flusses

Δt – Zeitintervall

Bei der Entstehung der Induktionsspannung gilt die Lenzsche Regel:

Der Induktionsstrom ist stets so gerichtet, dass er der Ursache seiner Entstehung entgegenwirkt.

Die Erscheinung, dass in einer felderzeugenden Spule eine Spannung und ein Strom induziert werden, bezeichnet man als **Selbstinduktion**.

Die Selbstinduktionsspannung kann man mit Hilfe der folgenden Formel berechnen:

$$U_{\text{ind}} = -L \frac{\Delta I}{\Delta t},$$

wo L – Induktivität einer Spule ist.

Die Einheit der Induktivität ist ein Henry (1H).

Janek hat während des Physikunterrichtes eine Notiz über elektromagnetische Induktion aufgeschrieben. Leider, wegen seiner dislektischen Störungen, hat er die Wörter nicht voneinander getrennt und alle Nomen mit kleinen Buchstaben geschrieben. Schreibe diese Notiz noch einmal richtig.

Dieelektromagnetischeinduktionberuhtaufdertatsachedassineinemmagnetfeldaufbewegte ladungeneineKraftausgeübtwirdwirddieserleiterbewegtegalobdurchdasmagnetfeldoderdurch ausserekraeftedannwerdendieimleiterbefindlichenelektronenbewegtdieseelektronenbauen danneinmagnetfeldaufdiesesmagnetfeldwirdvommagnetfelddesmagnetsüberlagerteskommt zurablenkungdesleitersdurchelektronenmangelundelektronenüberschussimmagnetfeldieseunte rschiedlichenladungenergebeneinespannungdierichtungdieserspannunghängtvonderbewegun gsrichtungunddermagnetfeldrichtungab.

Aufgabe 81

Auf der Abbildung siehst du eine einfache experimentelle Anordnung, die aus einem Stabmagneten und einer Spule besteht. Das Lämpchen soll zum Leuchten gebracht werden. Entscheide, in welchen Situationen das Lämpchen leuchtet und in welchen nicht.

Experimenttätigkeit	Lämpchen leuchtet	Lämpchen leuchtet nicht	
Der Magnet wird ruckartig aus der Spule		ment	
Der Magnet wird rackartig aus der Spaie			
herausgezogen.			
Der Magnet wird in den Hohlraum der Spule			
hineinbewegt.			8
Der Magnet ruht in der Spule.			
Die Spule bewegt sich und der Magnet ruht.			

Aufgabe 82

Ein Schüler hat die Aufgabe bekommen, die Abhängigkeit der Induktionsstromstärke von der Windungszahl der Spule zu überprüfen.

Er hat folgende Hilfsmittel zur Verfügung: 1 Glühbirnchen in Fassung, 3 Spulen (200, 500, 1200 Windungen) 1 Magnet, 1 Messgerät, 2 Kabel. Er hat von dem Lehrer Anweisungen, wie er den Versuch durchführen soll.

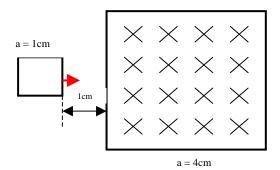
- 1. Verbinde die Fassung mit einer Spule mit 200 Windungen.
- 2. Halte den Magneten in das Innere der Spule und ziehe ihn schnell heraus.
- 3. Wiederhole den Versuch, indem du die Spulen mit 500 und 1200 Windungen benutzt.
- 4. Nimm nun statt der Glühbirne das Messgerät und verbinde es mit einer Spule mit 1200 Windungen.
- 5. Stelle das Messgerät auf einen kleinen Strommessbereich. Halte den Magneten in das Innere der Spule und ziehe ihn schnell heraus.
- 6. Wiederhole den Versuch mit dem Messgerät, indem du die Spulen mit den anderen Windungszahlen verwendest. Beschreibe die Beobachtungen.
- 7. Welche Schlussfolgerunge ziehst du aus deiner Beobachtung?

Ein anderer Schüler soll die Abhängigkeit der Stromstärke von der Bewegung des Magneten / bzw. der Bewegung der Spule überprüfen.

Material zum Versuch: 1 Glühbirnchen in Fassung, 1 Spule mit 1000 Windungen, 1 Magnet, 1 Messgerät, 2 lange Kabel

Schreibe für ihn eine Liste mit den Versuchsschritten, die notwendig sind, um das Ziel des Versuchs zu erreichen.

Aufgabe 83


Eine Spule befindet sich neben einem Elektromagneten. In welchen Fällen wird in der Spule eine Spannung induziert? Begründe deine Meinung!

- a) Der Stromkreis des Elektromagneten wird geschlossen.
- b) Im Stromkreis fließt ein konstanter Strom.
- c) Die Stromstärke wird geändert.
- d) Der Stromkreis des Elektromagneten wird geöffnet.

Aufgabe 84

Durch das homogene Magnetfeld (B = 10^{-2} T) einer Spule mit quadratischer Querschnittsfläche (S = 4×4 cm²) wird eine ebenfalls quadratische Leiterschleife (1×1 cm²) mit der Geschwindigkeit v = 2 cm/s gezogen. (siehe Abbildung unten).

Berechne die Werte der auftretenden Induktionsspannungen und stelle ihren zeitlichen Verlauf in einem Schaubild dar.

Aufgabe 85

Ein Flugzeug mit einer Tragflächenspannweite von 20m fliegt mit einer Geschwindigkeit von 900 km/h nach Süden. Es befindet sich auf einer geographischen Breite, wo die Vertikalkomponente des Erdmagnetfeldes $B_V = 6 \cdot 10^{-5} \, T$ beträgt.

- a) Wie groß ist die Induktionsspannung zwischen den Tragflächenenden?
- b) Welche Tragfläche hat höheres Potential?

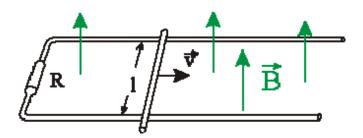
In einer luftgefüllten Spule der Länge l = 80 cm, der Windungszahl n = 500 und 10 cm Durchmesser wird die Stromstärke in der Zeit t = 4 s von $I_1 = 1$ A auf $I_2 = 12$ A gesteigert.

- a) Welche Induktivität besitzt die Spule?
- b) Welche Selbstinduktionsspannung besteht während des Stromanstiegs?
- c) Wie groß ist die Selbstinduktionsspannung beim Ausschalten des Stroms (t = 0, 02 s)?

Aufgabe 87

In einer Spule mit 320 Windungen, der Querschnittsfläche 50cm² und der Länge 60cm steigt die Stromstärke innerhalb von 0,6s von Null auf 3A. Berechne die Selbstinduktion und die Induktivität der Spule.

Aufgabe 88


Eine Spule mit dem Radius 4cm und einer Länge von 12,8cm hat 500 Windungen. Berechne ihre Induktivität.

Aufgabe 89

Ein Leiter bewegt sich mit der Geschwindigkeit v = 0.2m/s gleichförmig und senkrecht zu den Feldlinien durch ein homogenes Magnetfeld der Stärke B = 0.6T. Berechne die im Leiter induzierte Spannung, wenn das Magnetfeld eine Breite von 8cm hat?

Aufgabe 90

Ein waagrecht angeordneter und auf der rechten Seite offener Drahtrahmen der Breite l=10 cm wird von einem homogenen Magnetfeld der Flussdichte B=0,90 T senkrecht durchsetzt (s. Abbildung). Ein Leiterstück liegt auf dem Drahtrahmen und wird durch eine äußere Kraft F mit der konstanten Geschwindigkeit v=25 cm/s nach rechts bewegt. Der Widerstand im linken Teil des Drahtbügels besitzt den Wert $R=0,50 \Omega$, der Widerstand des restlichen Drahtbügels und des Leiterstücks sowie Kontaktwiderstände sind vernachlässigbar.

- a) Bestimme unter Verwendung des Induktionsgesetzes die Spannung U_i, die zwischen den beiden Auflagepunkten des Leiterstücks induziert wird, sowie die Stärke I des im geschlossenen Kreis fließenden Stroms.
- b) Berechne die Kraft F, mit der am Leiterstück gezogen werden muss. Reibungskräfte sollen unberücksichtigt bleiben.

5. Wechselstrom

Generator m
Hausnetz n
Primärspule f
Scheitelwert m
Sekundärspule f
Wechselstrom m
zeitlicher Verlauf m
Stromstärke f

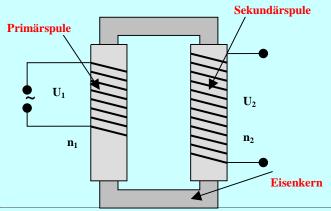
Grundwissen

Ein *Wechselstrom* ändert beim Fließen durch einen Leiter seine Größe und seine Richtung. Wechselstrom wird durch Generatoren in Kraftwerken erzeugt. Dadurch entsteht eine Spannung mit einem sinusförmigen Verlauf.

Den zeitlichen Verlauf der Spannung und der Stromstärke beschreiben folgende Formeln:

I₀ – Maximalwert oder Scheitelwert der Stromstärke

U₀ – Maximalwert oder Scheitelwert der Spannung


I_{eff} – Effektivwert der Stromstärke

U_{eff} – Effektivwert der Spannung (230V im Hausnetz)

$$\omega$$
 – Kreisfrequenz, $\omega = \frac{2\pi}{T}$

T – Periodendauer

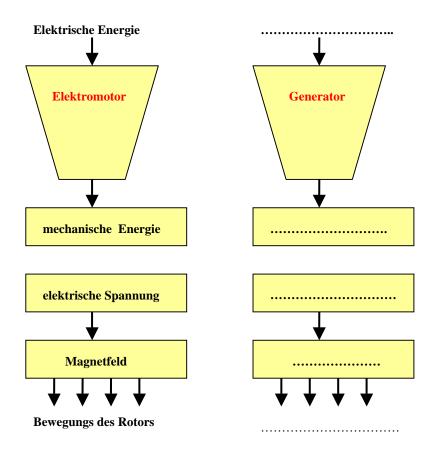
$$f = \frac{1}{T}$$
 - Frequenz (f = 50Hz im Hausnetz)

Zwischen Spannungen, Windungszahlen und Stromstärken in beiden Spulen gilt folgender

Zusammenhang:

$$\frac{U_2}{U_1} = \frac{n_2}{n_1} = \frac{I_1}{I_2}$$

Aufgabe 91 Verbinde die Satzteile so, dass sie richtige physikalische Aussagen darstellen.

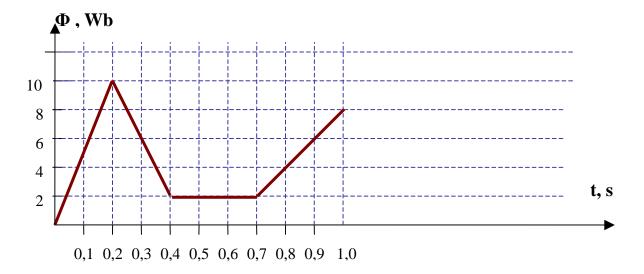

	Satzanfang		Satzende
1	Wenn man an die Primärspule des	A	desto kleiner ist die Induktionsspannung.
	Transformators eine Gleichspannung		
	anlegt,		
2	Das Entstehen einer Spannung bei der	В	wirkt seiner Ursache entgegen.
	Bewegung eines Leiters im Magnetfeld		
3	Je größer die Änderung des Magnetfeldes	C	umgekehrt wie Windungszahlen.
	bei gleicher Zeitdauer der Änderung ist,		
4	Der im geschlossenen Stromkreis	D	kann man mit Hilfe der Lorentzkraft
	entstehende Induktionsstrom		verstehen.
5	Je langsamer die Änderung des	Е	entsteht eine sinusförmige
	Magnetfeldes bei gleichem Betrag der		Wechselspannung.
	Änderung ist,		
6	Beim belasteten Transformator verhält	F	so kommt es zu keiner
	sich die Stromstärke		Magnetfeldänderung und somit entsteht
			keine Sekundärspannung.
7	Bei der gleichförmigen Rotation einer	G	desto größer ist die Induktionsspannung.
	Spule in einem homogenen magnetischen		
	Feld		

Aufgabe 92 Ordne die gegebenen Begriffe den Definitionen zu.

Frequenz, Scheitelwert	Magnetischer Fluss,	Effektivwert
------------------------	---------------------	--------------

Begriff	Definition
	Physikalische Größe, die die Anzahl der Schwingungen pro Zeiteinheit einer harmonischen Wechselstromstärke bzw. Wechselspannung angibt.
	Unter dieser Größe, die die Wechselspannung beschreibt, versteht man eine Gleichspannung mit gleich großer Leistung.
	Die Amplitude der Wechselspannung oder Wechselstromstärke.
	Der Produkt der magnetischen Flussdichte und der wirksamen Fläche.

Das Schema unten zeigt die Umwandlungen der Energie und der physikalischen Größen im Elektromotor. Vervollständige ein ähnliches Schema für den Stromgenerator.



Aufgabe 94

Eine Leiterschleife befindet sich in einem Magnetfeld, dessen magnetischer Fluss sich zeitlich ändert, wie in der Skizze unten. Schreibe die Informationen auf , die man aus dem Diagramm ablesen kann.

Beispiel:

- 1. Innerhalb der Zeitspanne (0; 0,2s) steigt der magnetische Fluss von 0 bis 10s.
- 2. Im Zeitpunkt t = 0.2s erreicht er seinen maximalen Wert $\Phi = 10$ Wb.

Warum kann ein Transformator nicht mit einer Gleichspannungsquelle betrieben werden?

Aufgabe 96

Wodurch entstehen bei einem Transformator Energieverluste? Wie kann man diese so weit als möglich vermeiden?

Aufgabe 97

Welchen Scheitelwert hat die Stromstärke in einer Glühlampe für 230V, deren Leistung. a) 60W b) 100W beträgt?

Aufgabe 98

Die Primärspule eines unbelasteten Transformators, die an ein 230V - Netz angeschlossen ist, hat 125 Windungen. Berechne die Spannung an den Enden der Sekundärspule, wenn diese 4000 Windungen hat.

Aufgabe 99

Ein Transformator hat die Windungszahlen: n_1 = 1500 und n_2 = 50. Er wird an ein 230V - Netz angeschlossen. Ein Strom von 12A fließt durch den Verbraucher in einer Sekundärspule (verlustfreier Transformator angenommen).

- a) Welches Übersetzungsverhältnis hat der Trafo?
- b) Welcher Strom fließt in der Primärspule der Trafos?

Aufgabe 100

Eine Leiterschleife (a=100mm², 100 Wicklungen) rotiert in einem homogenen Magnetfeld mit der magnetischen Induktion von 6T.

Welche maximale Spannungsamplitude wird bei einer Drehzahl von 10Hz in die Schleife induziert? Wie groß ist der Effektivwert der Spannung?

6. Weiß ich das schon? Fragen und Aufgaben zum Magnetismus

Aufgabe 101 Verbinde richtig die Namen der Physiker mit ihren wissenschaftlichen Leistungen.

V CI	verbinde fichtig die Namen der Physiker mit ihren wissenschaftlichen Leistungen.				
	Name		Entdeckung		
1	Michael Faraday	A	Er entdeckte 1819 die Ablenkung einer Kompassnadel durch einen stromdurchflossenen Leiter.		
2	Hans Christian Øersted	В	Er konnte in aufeinander folgenden Versuchen nachweisen, dass zwei stromdurchflossene Leiter eine Anziehungskraft aufeinander ausüben, wenn in beiden Leitern die Stromrichtung gleich ist, und dass sie eine Abstoßungskraft aufeinander ausüben, wenn die Stromrichtung entgegengesetzt ist.		
3	Andre-Marie Ampere	С	Zu seinen Erfindungen gehören Wechselstrom-Motor, Funktechnik, Fernsteuerungen. Nach ihm ist die physikalische Einheit der magnetischen Flussdichte benannt.		
4	Nicola Tesla	D	Er entdeckte, dass elektrische Spannung in einer Spule oder in einem Leiter durch die Änderung eines Magnetflusses hervorgerufen wird.		

Verbinde logisch die Satzteile.

Satzanfang	Satzende
Ein Transformator besteht aus einem	entsteht im Eiskern ein wechselndes
geschlossenen	Magnetfeld
Zum Betrieb eines Transformators ist	größer wird die Spannung im Vergleich zur
	Primärspannung
Wenn die Primärspule von Wechselstrom	Eisenkern mit einer Primärspule und einer
durchflossen wird,	Sekundärspule.
Je mehr Windungen die Sekundärspule im	auf die Sekundärspule übertragen.
Vergleich zur Primärspule hat, desto	
Das magnetische Wechselfeld wird über den	umgekehrt proportional
Eisenkern	
Die Ströme verhalten sich zu den	eine ständig veränderliche Spannung nötig.
Windungszahlen	

Aufgabe 103 Welche Stoffe werden von einem Magneten angezogen?

A) Holz, Eisen, Kunststoff

B) Kupfer, Nickel, Aluminium

C) Nickel, Eisen, Kobalt

D) alle Metalle

Aufgabe 104 Womit kann man die magnetische Kraft abschirmen?

A) mit Kunstsoff

B) mit Kupferplatten

C) mit Eisenplatten

D) mit Platten aus beliebigem Metall

Aufgabe 105

Zwei Eisennägel (X und Y) ziehen sich gegenseitig an. Welche Möglichkeiten gibt es?

- 1. X und Y sind magnetisch
- 2. X ist magnetisch, Y nicht magnetisch
- 3. Y ist magnetisch, X nicht magnetisch
- 4. X und Y sind nicht magnetisch

A) 1, 2 und 3 sind möglich

B) 2 und 3 sind möglich

C) nur 1 ist möglich

D) alle sind möglich

Aufgabe 106

Die magnetische Wirkung ist neben der chemischen Wirkung, der Wärmewirkung eine Wirkung des elektrischen Stromes. Welches der aufgelisteten elektrischen Geräte kommt ohne magnetische Wirkung aus?

A) Festplatte des PC

B) Wasserkocher

C) Rasierapparat

D) Mixer

Aufgabe 107

Elektronen treten in einem Winkel von 90° in ein homogenes Magnetfeld ein.

Eine magnetische Kraft F wirkt auf die Elektronen und zwingt sie auf eine Kreisbahn mit dem Radius *R*.

Wie ändern sich der Betrag der magnetischen Kraft F und der Radius, wenn die Elektronen mit einer höheren Geschwindigkeit in das Feld eintreten?

- A) F wird kleiner und R wird größer.
- B) F wird größer und R wird kleiner.
- C) F wird größer und R wird größer.
- D) Weder F noch R verändern sich.

Aufgabe 108 Die magnetische Flussdichte im Innern einer Spule hängt nur ab von

- A) Stromstärke und Windungszahl der Spule,
- B) Stromstärke, Windungszahl und Durchmesser der Spule,
- C) Stromstärke, Windungszahl und der Länge der Spule,
- D) Stromstärke und Durchmesser der Spule.

Aufgabe 109. Wie nennt man die kleinen Magnete im Inneren eines Eisenstücks?

- A) Elementarteilchen
- B) Elementarmagnete

C) Atome

D) Dipole

Aufgabe 110

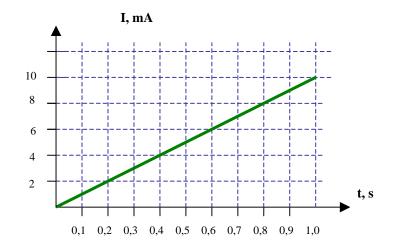
Durch einen geraden Draht fließt ein Gleichstrom der Stromstärke I . Welche Aussage trifft dann zu?

- A) Der Strom erzeugt ein Magnetfeld: das Leiterstück verhält sich wie ein Stabmagnet, wobei der Nordpol in Stromrichtung zeigt.
- B) Der Strom erzeugt ein Magnetfeld: das Leiterstück benimmt sich wie ein Stabmagnet, wobei der Südpol in Stromrichtung zeigt.
- C) Um den Draht entsteht kein Magnetfeld, da nur Wechselstrom ein Magnetfeld erzeugt.
- D) Der Strom erzeugt ein Magnetfeld, dessen Feldlinien den Stab kreisförmig umgeben.

Aufgabe 111

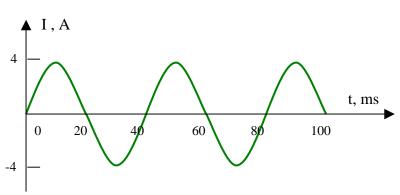
Das Diagramm zeigt den zeitlichen Verlauf der Stromstärke in einer Spule. Die während der Stromstärkeänderung auftretende Selbstinduktionsspannung beträgt 1 V.

Daraus kann man schließen, dass die Induktivität der Spule:


A) 100H

B) 1H

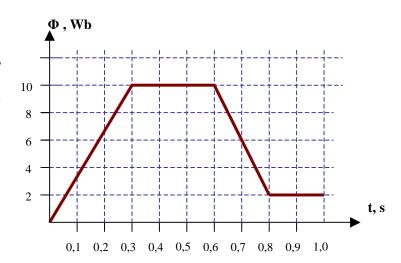
C) 0,1H


D) 0,01H

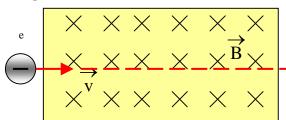
beträgt.

Aufgabe 112

In dem Diagramm wurde ein sinusförmiger Wechselstrom dargestellt. Aus den eingetragenen Daten kann man schließen, dass:



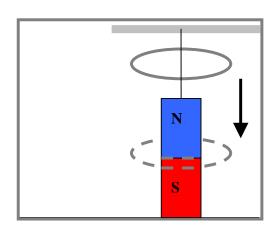
- A) der Effektivwert des Stromes 4A beträgt,
- B) die Periodendauer 20 ms beträgt,
- C) die Frequenz 25Hz beträgt,
- D) die Scheitelwert $\frac{4}{\sqrt{2}}$ A beträgt.


Eine Leiterschleife befindet sich in einem Magnetfeld, dessen magnetischer Fluss sich zeitlich ändert, wie in der Skizze unten.

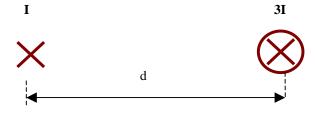
Das Magnetfeld steht überall senkrecht auf einer Leiterschleife.

Berechne die induzierte Spannung und zeichne ein U (t) Diagramm für diese Situation.

Aufgabe 114



Ein Elektron mit der Ladung e tritt in ein Gebiet mit einem homogenen Magnetfeld der Flussdichte B und einem homogenen elektrischen Feld der Feldstärke E ein. Es setzt seine Bewegung fort, ohne dass sich Betrag und Richtung der Geschwindigkeit ändern (siehe Abbildung unten). Das Magnetfeld zeigt in die Papierebene hinein und steht im rechten Winkel zum elektrischen Feld.


- 1. Welche Richtung der hat Feldstärkevektor E.
- 2. Finde einen Ausdruck für die Geschwindigkeit des Elektrons in Abhängigkeit von E und B.

Aufgabe 115

Ein starker Stabmagnet hängt mit dem Nordpol nach oben gerichtet an einem Faden.
Ein leichter Aluminiumring wird, wie in der Abbildung gezeigt, über dem Magneten festgehalten und dann zu Boden fallen gelassen. Erkläre, wieso der Ring länger für den Fall benötigt, wenn der Magnet da ist, als wenn dieser nicht da wäre.

Aufgabe 116

Zwei lange parallele Leiter liegen in einem Abstand d voneinander entfernt. Durch den linken Leiter fließt ein Strom $I_1 = I$, durch den rechten $I_2 = 3I$. Beide Ströme sind in die Papierebene hinein gerichtet.

Im welchem Abstand von dem linken Leiter befindet sich ein Punkt, in dem die resultierende Flussdichte B null beträgt?

III. Thermodynamik

1. Die kinetische Theorie der Gase

Aggregatzustand m	
Stoß m	
Diffusion f	
Bindung f	
Gitterplatz m	
Adhäsion f	
Kohäsion f	
Meniskus m	
konkav	
konvex	

Grundwissen

Die kinetische Theorie basiert auf folgenden Voraussetzungen

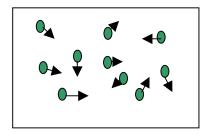
- ❖ Gase bestehen aus Teilchen (Molekülen oder Atomen), die im Raum weit verteilt sind. Das Volumen der einzelnen Teilchen ist vernachlässigbar klein im Vergleich zum Gesamtvolumen.
- ❖ Die Teilchen im Gas befinden sich in ständiger, schneller und geradliniger Bewegung. Sie stoßen miteinander und mit der Gefäßwand zusammen. Bei den Stößen kann Energie von einem Teilchen auf ein anderes übertragen werden, aber insgesamt geht keine kinetische Energie verloren.
- ❖ Anziehungskräfte zwischen den Teilchen sind vernachlässigbar.

Aufgabe 117

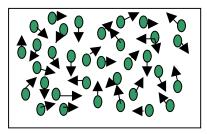
Erzähle auf Grundlage des kurzen Textes die Geschichte der Entwicklung der Thermodynamik im XIX. Jh.

Kurze Geschichte der Thermodynamik

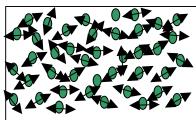
- 1824: N.L.S. Carnot veröffentlicht die "Betrachtungen über die bewegende Kraft des Feuers und die zur Entwicklung dieser Kraft geeigneten Maschinen". Carnot generiert folgende Begriffe:
 - o 'Vollkommene Maschine'
 - o 'Reversibler Kreisprozess'
 - o 'Erhaltung von Energie'
- 1845: J.R. Mayer definiert den "Satz von der Erhaltung der Energie" und beschreibt die Äquivalenz von Arbeit und Wärme (1. Hauptsatz der Thermodynamik).
- 1848: J.P. Joule experimentiert zum 1. Hauptsatz der Thermodynamik.
- 1850: R. Clausius definiert den Begriff Entropie und formuliert den 1. und 2. Hauptsatz der Thermodynamik.
- 1848: W. Thomson (Lord Kelvin) erkennt die Existenz einer universellen Temperaturskala.


Wenn du die beiden Satzteile logisch verbindest, bekommst du die Definitionen der gewählten, für die Thermodynamik wichtigen Grundbegriffe.

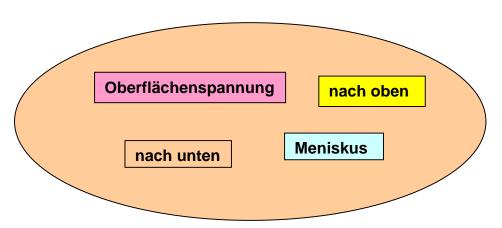
	Satzanfang		Satzende
1	Die Materie ist aus Atomen (griech. ατομοσ: "unteilbar") aufgebaut,	A	die Zusammenhangskräfte zwischen den Atomen beziehungsweise Molekülen eines Stoffes.
2	Als Brownsche Molekularbewegung wird	В	die sich durch ihre Gestalt voneinander unterscheiden und sich im "unendlichen Vakuum" bewegen.
3	Die Diffusion ist	С	die Zusammenhangskräfte zwischen den Molekülen zweier verschiedener Stoffe.
4	Die Adhäsion bezeichnet	D	eine Wölbung ein der Oberfläche einer Flüssigkeit
5	Die Kohäsion bezeichnet	Е	die thermisch getriebene Eigenbewegung von Teilchen bezeichnet.
6	Ein Meniskus ist Es können konkave und konvexe Menisken unterschieden werden.	F	die selbständig verlaufende Vermischung von miteinander in Berührung stehenden Stoffen (z.B. Gase, Flüssigkeiten oder Lösungen) verschiedener Konzentration infolge ihrer Wärmebewegung.

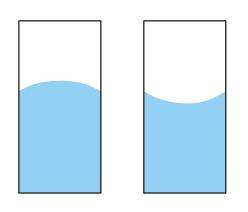

Aufgabe 119

Ordne die richtigen Bemerkungen über die Eigenschaften der Materie den richtigen Aggregatzuständen zu und schreibe sie in eine Tabelle. (Ein Satz kann auch zu mehreren Aggregatzuständen passen!)


- 1. Die Teilchen (Atome oder Moleküle) sind fest an ihre Gitterplätze gebunden.
- 2. Die Teilchen sind nur leicht an andere Teilchen gebunden.
- 3. Die Bindung mit anderen Teilchen ist sehr gering. (Sie können meist vernachlässigt werden.)
- 4. Die Teilchen führen um die Gitterplätze herum Schwingungen aus.
- 5. Die Teilchen können sich im gesamten Raum frei bewegen.

gasförmiger Aggregatzustand


flüssiger Aggregatzustand



fester Aggregatzustand

Fülle den Lückentext aus!

Meniskus

konkaver Meniskus konvexer Meniskus

Unter der(1).

von Flüssigkeiten versteht man die Erscheinung, dass Flüssigkeiten der Vergrößerung ihrer Oberfläche einen Widerstand entgegensetzen.

Bei Flüssigkeiten, die das Glas benetzen (z.B. Wasser) ist die Oberfläche in der Mitte(3). gebogen (konkaver Meniskus), bei nicht benetzenden Flüssigkeiten (z.B. Quecksilber)(4) (konvexer Meniskus).

2. Die kinetische Deutung der Temperatur, allgemeines Gasgesetz

thermodynamisches Gleichgewicht n	
absolute Temperaturskala f	
Thermometer <i>n</i>	
absoluter Nullpunkt <i>m</i>	
allgemeines Gasgesetz n	
Zustand m	
Zustandsgleichung f	

Grundwissen

Die Temperatur eines Körpers ist ein Maß für die thermische Bewegung seiner Atome und Moleküle (n- Zahl der Moleküle).

$$n \cdot W_{kin. \ mittl.} \sim T$$

Die Temperatur ist eine physikalische Größe, die verspricht, dass zwei Körper mit gleicher Temperatur im thermodynamischen Gleichgewicht bleiben, also keinen Wärmeaustausch mehr machen.

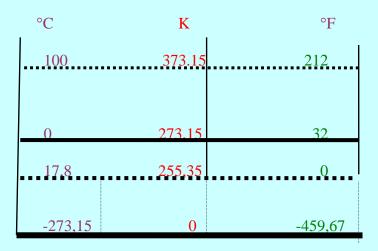


Abb. Zusammenhang zwischen Celsiusskala, Fahrenheitskala und Kelvinskala

Die allgemeine Zustandsgleichung der Gase

$$\frac{p \cdot V}{T} = konst. \qquad \qquad \frac{p_1 \cdot V_1}{T_1} = \frac{p_2 V_2}{T_2}$$

Clapeyron-Gleichung ist eine andere Art der allgemeinen thermodynamischen

Zustandsgleichung idealer Gase. (n- Zahl der Moleküle)

$$p \cdot V = n \cdot R \cdot T$$

58

Lies den Text vor und beantworte die Fragen.

Die mittlere kinetische Energie hängt von der **Temperatur** ab; sie nimmt mit der Temperatur zu. Bei gegebener Temperatur ist die mittlere kinetische Energie für alle Gase die gleiche. Mit zunehmender Temperatur nimmt die mittlere kinetische Energie und damit die mittlere Geschwindigkeit der Teilchen zu. Die Stöße gegen die Gefäßwände werden heftiger und häufiger. Als Konsequenz steigt der Druck mit der Temperatur.

Man kann sich nun vorstellen, dass die Teilchen irgendwann zur Ruhe kommen. Diese theoretische Vorstellung führt zu der Vermutung, dass es eine niedrigste Temperatur gibt.

Diese Temperatur heißt "absoluter Nullpunkt". Die darauf aufbauende Temperaturskala heißt die absolute Temperaturskala oder Kelvin-Skala.

1. Warum steigt der Druck auf die Gefäßwände mit der Temperatur?

2. Erkläre mit Hilfe der kinetischen Theorie der Gase, dass die niedrigste Temperatur existieren muss.
3. Warum nennt man die absolute Temperaturskala auch Kelvin-Skala? Suche die Informationen in Büchern und im Internet.
Aufgabe 122 Richtig oder falsch? Korrigiere die falschen Aussagen.
Beispiel: Die Clapeyron-Gleichung ist eine Art der geometrischen Beschreibung der kinetischen Theorie der Gase.
Nein, die Clapeyron-Gleichung ist keine Art der geometrischen Beschreibung der kinetischen Theorie der Gase, sondern eine andere Art der allgemeinen thermodynamischen Zustandsgleichung idealer Gase. oder Ja, die Clapeyron-Gleichung ist
a) Eine thermische Zustandsgleichung liefert den Zusammenhang zwischen Druck p , Temperatur T und Dichte ρ .
b) Die ideale Gasgleichung ist ein Beispiel für die kalorische Zustandsgleichung.
c) Bei einer Zustandsänderung eines idealen Gases, bei der die innere Energie konstant gehalten wird, bleibt auch die Temperatur konstant.

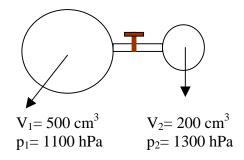
Wandle in die angegebene Maßeinheit um.

a) in °C	b) in K	c) in °F
➤ 5 K	> 55 °C	➤ 45 K
➤ 478 K	➤ 478 K	➤ 293 K
> 50°F	➤ 40°F	> 80°C
> -25°F	> -35°F	> 15 °C

Rechenaufgaben

Aufgabe 124

Wie verändert sich der Druck, wenn die mittlere Geschwindigkeit der Moleküle in einem konstanten Volumen durch Temperaturerhöhung verdoppelt wird?


Aufgabe 125

Die Luft in einem Raum (5m langen, 4m breiten, 2.5 m hohen) wird von C 17° C auf 27° erwärmt.

Es soll angenommen werden, dass der Luftdruck unverändert bleibt. Berechne, welches Volumen die Luft hat, die bei diesem Vorgang aus dem Raum entweicht.

Aufgabe 126.

Zwei Gefäße (siehe Grafik) sind durch einen zunächst geschlossenen Hahn verbunden. Berechne welcher Druck sich einstellt, wenn der Hahn geöffnet wird und die Temperatur dabei näherungsweise konstant bleibt.

3. Umwandlungen des idealen Gases

Umwandlung

Isotherme

Gasmenge

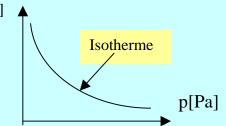
isothermische Umwandlung

isochorische Umwandlung

isobarische Umwandlung

Normalbedingungen

Gaskonstante

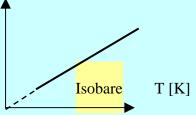

Grundwissen

Isothermische Umwandlung

$$p \cdot V = konstant$$

$$V = V_1 \frac{p_1}{p}$$

Gesetz von Boyle und Mariotte

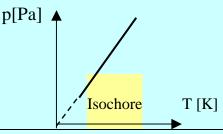

Bei konstanter Temperatur ist das Volumen einer eingeschlossenen Gasmenge dem Kehrwert des Druckes proportional.

Isobarische Umwandlung

$$V \sim T$$

$$V = \frac{V_0}{T_0} T$$

V [cm³]

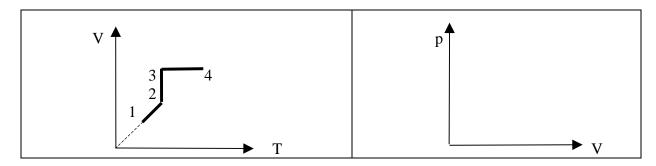

Gesetz von Guy – Lussac

Bei konstantem Druck ist das Volumen der eingeschlossenen Gasmenge der Temperatur in Kelvin-Skala proportional.

Isochorische Umwandlung

$$p \sim T$$

$$p = \frac{p_0}{T_0} T$$


Gesetz von Charles

Bei konstantem Volumen ist der Druck einer eingeschlossenen Gasmenge zur Temperatur in Kelvin-Skala proportional.

Aufgabe 127 Beantworte die Fragen. 1. Was besagen die Zustandsänderungen isotherm, isobar, isochor?
2. Was verstehst du unter dem Begriff "eingeschlossene Gasmenge"?
3. Wie hoch sind der Druck und die Temperatur bei sogenannten Normalbedingungen?

Aufgabe 128 (p-V Diagramm)

Übertrage den nebenstehenden Kreisprozess eines idealen Gases qualitativ in das p-V-Diagramm!

Rechenaufgaben

Aufgabe 129

Eine leere verschlossene Plastikflasche wird von einem Raum der Lufttemperatur 17°C (p = 1010 hPa) in die Sonne gestellt und erwärmt sich auf eine Temperatur von 47°C. Berechne den Luftdruck in der Flasche.

Aufgabe 130

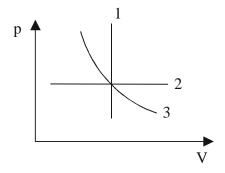
Die Luft in einem Backofen (1 = 60 cm, b = 40 cm, h = 60 cm) wird von 27°C auf 187°C aufgewärmt. Der Luftdruck beträgt1010 hPa. Berechne den Druck im Inneren des Herdes, wenn bei der Erwärmung keine Luft aus dem Herd strömen kann.

Aufgabe 131

Welcher Druck ist in einer Kugel ($V_K = 0.1 \text{ m}^3$), wenn bei der Luftpumpe ($V_P = 1 \text{ dm}^3$) 15 Kolbenzüge gemacht wurden und am An fang in der Kugel ein Luftdruck von 1000 hPa herrschte? (Temperaturunterschiede können vernachlässigt werden)

Aufgabe 132

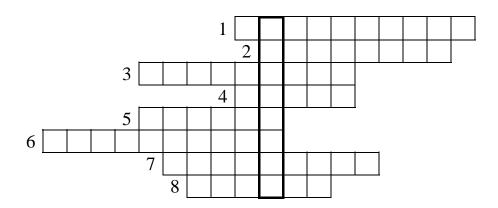
Bei welcher Temperatur in °C nimmt ein Gas unter konstantem Druck das doppelte Volumen ein, wenn das Gas eine Anfangstemperatur von 15°C hat?


Eine kugelförmige Luftblase steigt im Wasser auf. In einer Tiefe von 10 m hat sie einen Durchmesser von 1 cm. Welchen Durchmesser hat sie kurz vor Erreichen der Oberfläche? (Temperaturunterschiede können vernachlässigt werden, p_{atm}=1000 hPa)

Aufgabe 134

Die Dichte von Chlorgas beträgt im Normzustand $3,22\frac{kg}{m^3}$. Welche Dichte hat das Gas bei - 20° C, bei konstantem Druck?

Aufgabe 135


Welche Zustandsänderungen werden durch die mit Ziffern gekennzeichneten Zustandslinien im abgebildeten Zustandsdiagramm dargestellt?

Aufgabe 136 (Rätsel)

Alle Forscher haben sich mit Thermodynamik beschäftigt, aber nicht nur!

- 1. Er hat zusammen mit Thénard und Davy 1808 das Element Bor entdeckt.
- 2. Er entdeckte den blinden Fleck im Auge.
- 3. Er entdeckte die Beziehung zwischen der Entropie und der Wahrscheinlichkeit.
- 4. Er gilt als einer der Begründer der modernen Chemie.
- 5. Er beschäftigte sich auch intensiv mit Elektrizität.
- 6. Er war gezwungen, eine Kaufmannslehrstelle in Amsterdam anzunehmen.
- 7. Er war von Kartenspielen bzw. Pharo sehr begeistert.
- 8. Im Alter von 18 Jahren diente er in der Armee von Napoleon.

Wer ist der Mann der Namen?

4. I. und II. Satz der Thermodynamik. Motoren*

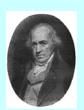
!massaudibal	
irreversibel	
reversibel	
Kreisprozess m	
Arbeitsmedium n	
Wirkungsgrad m	
Nutzenergie <i>f</i>	
Energieaufwand m	
Energieeffizienz f	
Expansion f	
Ausdehnung f	
Kompression f	

Grundwissen

Als innere Energie des Körpers verstehen wir die Summe aller Energieformen, die die Moleküle des Körpers besitzen.

Energie, die allein auf Grund eines Temperaturgefälles mittels ungeordneter Teilchenbewegung von einem Körper auf einem anderen übergeht, heißt Wärme Q.

Der erste Hauptsatz der Wärmelehre


Die innere Energie eines Körpers kann durch Zufuhr von Arbeit und durch Zufuhr von Wärme erhöht werden.

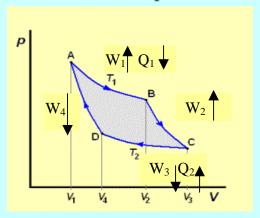
$$\Delta \mathbf{U} = \mathbf{W} + \mathbf{Q}$$

Der zweite Hauptsatz der Wärmelehre

Wärme kann nicht von selbst von einem Körper niedriger Temperatur auf einen Körper höherer Temperatur übergehen. (Clausius Rudolf, 1822-1888)

Als **Kreisprozess** bezeichnet man eine Folge von Zustandsänderungen eines Arbeitsmediums (Flüssigkeit, Dampf, Gas, allgemein Fluid genannt), die periodisch abläuft, wobei immer wieder der Ausgangszustand, gekennzeichnet durch die Zustandsgrößen, wie u.a. Druck, Temperatur und Dichte, erreicht wird. (Wikipedia.de)

James Watt



Nikolaus Otto

Rudolf Diesel

Carnot Kreisprozeß

Carnotscher Kreisprozess läuft folgendermaßen ab:

- 1. isotherme Expansion (Ausdehnung) ideales Gas nimmt die Wärmemenge Q_1 auf
- 2. adiabatische Expansion (Abkühlung und trotzdem Ausdehnung) kein Wärmeaustausch
- 3. isotherme Kompression ideales Gas gibt die Wärmemenge $\mathsf{Q}_2\,\mathsf{ab}$
- 4. adiabatische Kompression kein Wärmeaustausch

Wirkungsgrad n

Der Quotient aus Nutzenergie und aufgewendeter Energie wird als **Wirkungsgrad** bezeichnet und ist das **Maß für die Energieeffizienz**.

Aufgabe 137Schreibe in die Tabelle die Beispiele der wirklich ablaufenden Prozesse.

Vorzeichen	Arbe	eit ⊿W	Wärmemenge ∆Q							
Positiv	Die Arbeit wird von außen an einer Flüssigkeit bzw. einem Gas geleistet.		Die Wärme wird von außen dem Gas zugeführt.							
Negativ	Die Arbeit wird von der Flüssigkeit bzw. dem Gas nach außen geleistet.		Die Wärme wird vom Gas nach außen abgegeben.							

Aufgabe 138.

Der Text enthält 35 Fehler (falsche Buchstaben). Die Fehler ergeben das Lösungswort "Der zweite Hauptsatz der Wärmelehre".

Korrigiere den Text und stelle dann die Fragen zu den fett gedruchten Sätzen!

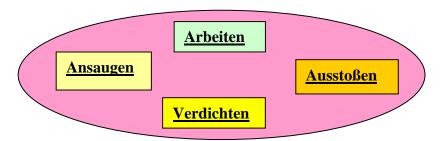
Der zweite Hauptsatz der Wärmelehre betrefft Vorgänge, die von relbst nur in eine Richtung verl ufen. Solche Vorgängä nennt maz irreversibel (nicht umkehrbar). Eiw Beispiel dafür ist das Mischen zweeer unterschiedlicher Flissigreiten gleicher Temperatur it einem Becher. Diese beide Flessigkeiten werden sich von selbst n cht mehr entmischem.

BeHrachtet man mechanische Vorgänga, wie zum Beispiel die Hin- und Hurbewegung eines Pendels, so piederholt sech dieser Bewegungtablauf, wenn keine Reibung vorhasden ist, immer wieder. Vorgänga, die von selbst auch in del utgekehrten Richtung laufen könnez, nennt man reversibel (umkehrb r).

Irreversibilität hat zur dolge, dass in der reebungsbehefteten Mechanik alle Vorgänge vor selbst nur in eine Richtung 1 ufen. Das heißt, dass ein ruheWdeh Fadenpendel aufgrund der irräversiblen Umwandlung von mecharischer Energie in innere Energie mie von selbst zu rchwingen begennt. Die dafür notwendige Enelgie könnte es ja - ohne den ersten Heuptsatz zu verletzen - duhch Umwendlung von innerer Enerrie der Umgebung in mechanische energie der Schwingung gewinnen.

• • •	••	••	• • •	•	• • •	••	• •	• •	• • •	••	• •	• •	• • •		• • •	•	• •	••	• •	••	•••	••	•	• •	• •	• •	• •	• • •	••	• • •	 • • •	• •	• • •	• •	••	• • •	• • •	••	• •	• • •	• •	••	•	• • •	•	••	• •
• • •	• •	• •				٠.	٠.			٠.	• •	• •						٠.	٠.	٠.	٠.	٠.	٠.	٠.	• •	• •			٠.		 	• •		• •	٠.			٠.	٠.			٠.	٠.			٠.	• •
	• •	• •	• • •			• •	• •	• •		• •	• •	• •		• • •	• • •		• •	• •	• •	• •	• •	• •	• •	• •	• •	• •			• •	• •	 • •	• •	• • •	• •	• •			• •	• •	• • •		• •	• •	• • •	• •	• •	••
						٠.				٠.								٠.	٠.	٠.	٠.	٠.	٠.	٠.					٠.		 	٠.						٠.	٠.			٠.				٠.	

Aufgabe 139 (Wärmepumpe)


Eine ideale Wärmepumpe wird mit einem Elektromotor mit einem Wirkungsgrad von 80% angetrieben. Sie arbeitet zwischen der Erdtemperatur $T_T = 5$ °C und einer Zimmertemperatur von $T_H = 22$ °C.

- a) Wie groß ist ihre ideale Leistungsziffer?
- b) Wie viel Wärme kommt pro 1000 J aufgewendeter Energie im Zimmer an. Wie groß wäre also die reale Leistungsziffer?
- c) Der Strom wird in einem Kraftwerk mit einem Wirkungsgrad von 40% produziert. Wie viel Wärme kann jetzt pro 1000 J aufgewendeter Energie mit der Wärmepumpe ins Zimmer gepumpt werden? Wie groß wäre die reale Leistungsziffer jetzt?
- d) Die Wärmepumpe habe ihrerseits nur einen Wirkungsgrad von 40%. Wie viel Wärme kommt jetzt unter den Bedingungen von c) im geheizten Raum an? Wie groß wäre ihre Leistungsziffer jetzt?

Prinzip der Wirkungsweise des Viertakt-Ottomotors:

Verbrennungsmotoren verwandeln die chemische Energie, die in Treibstoffen steckt, in Bewegungsenergie. Die Treibstoffe werden gezündet und verbrennen mit dem Sauerstoff der Luft innerhalb sehr kurzer Zeit. Dabei entsteht viel Wärme und die Verbrennungsgase dehnen sich explosionsartig aus und können damit Arbeit leisten.

Wähle die richtigen Namen der beschriebenen Takte!

Takt								
	Das Benzin-Luft-Gemisch wird durch das Einlassventil in	Einlassventil	Zündkerze					
	den Brennraum gesaugt, bis dieser vollständig ausgefüllt ist.		Auslassventil					
	Die Gase werden durch die Aufwärtsbewegung des Kolbens stark komprimiert.		Austassventii					
	Durch einen Funken der Zündkerze explodieren die	Brennraum -	Kolben					
	Gase und treiben so mit großer Kraft die Kurbelwelle an.	Kurbelwelle						
	Durch die Aufwärtsbewegung des Kolbens werden die Abgase durch das Auslassventil ausgestoßen.		WILLIAM TO THE PARTY OF THE PAR					

Rechenaufgaben

Aufgabe 141

Aus welcher Höhe fällt ein Buch, m = 100 g (c = $2.43 \frac{J}{kg \cdot {}^{\circ}C}$), damit sich seine Temperatur um 0,01 erhöht? 100% der Arbeit wandeln sich in innere Energie um.

Aufgabe 142

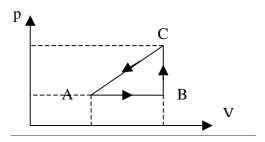
Die Luft in einem Klassenzimmer (l = 8.0 m, b = 5.5 m, h = 3 m) wird durch die Wärmestrahlung der Sonne von 20° C auf 23° C erwärmt. Berechne die Änderung der inneren Energie der Luft. Luftdichte -1,2041 $\frac{kg}{m^3}$ Wärmekapazität von Luft 1005 $\frac{J}{kg \cdot {}^{\circ}C}$.

Aufgabe 143.

Eine Carnot -Wärmekraftmaschine nimmt bei der oberen Arbeitstemperatur von 130°C eine Wärme von 400J pro Umlauf auf und gibt bei der unteren Temperatur die Wärme 320 J ab. Wie hoch ist die untere Arbeitstemperatur? Wie groß ist der thermische Wirkungsgrad?

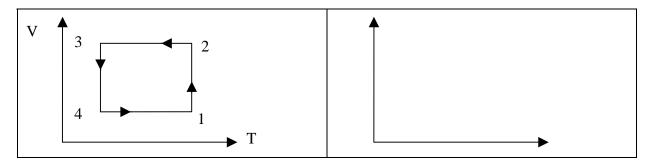
Aufgabe 144.

Der Motor eines Autos verbraucht stündlich 10 l Benzin mit einem Heizwert von 42000 kJ/kg. Benzin hat eine Dichte von 0,79 kg/l. Die Motorleistung beträgt 35 kW. Wie groß ist sein Wirkungsgrad? Wie viel Wärme wird an die Luft abgegeben? Wie könnte man den Wirkungsgrad steigern?


Aufgabe 145

Ein thermodynamisches System wird von einem Anfangszustand A über Zustände B und C zurück zum Anfangszustand gebracht.

Vervollständige die Tabelle.


Wie groß ist die vom System verrichtete Arbeit?

	Q	W	ΔU
$A \rightarrow B$			+
B→C	+		
C→A			



Aufgabe 146

Übertrage unten stehenden Kreisprozess eines idealen Gases quantitativ in das p-V-Diagramm. Verwende die gleiche Nummerierung der Zustände und gib auch die Umlaufrichtung an!

Dieselmotor der ersten Generation (1906)

5. Wärme

Aggregatzustand m schmelzen verdampfen kondensieren erstarren sublimieren resublimieren Schmelztemperatur *f* Erstarrungstemperatur fSiedetemperatur fDichte *f* Dampfdruckkurve f Tripelpunkt *m* spezifische Wärmekapazität f Wärmebilanz f spezifische Schmelzwärme f spezifische Verdampfungswärme f Kältemischung f

Grundwissen

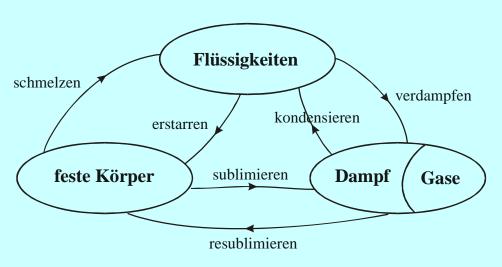


Abb. Aggregatzustände der Materie und Aggregatzustandsänderungen

Unter der **Dichte** eines homogenen Stoffes versteht man den Quotienten aus der Masse m und dem Volumen V von Körpern, die aus diesem Stoff bestehen

$$\rho = \frac{m}{V}$$

Die Einheit der Dichte ist 1 $\frac{\text{kg}}{\text{m}^3}$

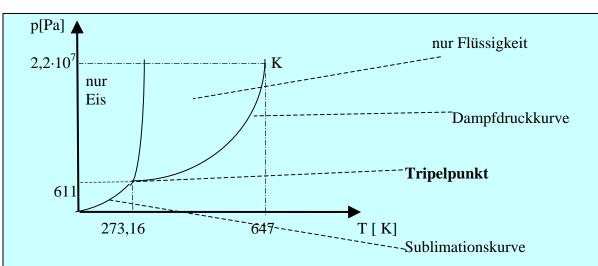


Abb. p-T-Diagramm für Wasser

Der **Tripelpunkt** im Zustandsdiagramm entspricht diesem Zustand, wenn Wasser in allen drei Aggregatzuständen (fest, flüssig und gasförmig) im Gleichgewicht nebeneinander bestehen kann.

$$\Delta Q = c \cdot m \cdot \Delta t$$

m - Masse

 Δt - Temperaturzunahme

c - spezifische Wärmekapazität (spezifische Wärme)

Die **spezifische Wärmekapazität** c ist eine Materialkonstante. Ihr Zahlenwert gibt an, welche Wärme man braucht um 1 kg des betreffenden Stoffes um 1 K zu erwärmen.

Spezifische Wärmekapazität hat die **Einheit**
$$1\frac{J}{kg \cdot K}$$
.

In einem abgeschlossenen System gilt der Energieerhaltungssatz, also müssen die abgegebene und die zugeführte Wärme gleich groß sein.

Die Wärmebilanz

$$Q_{ab} = Q_{zu}$$

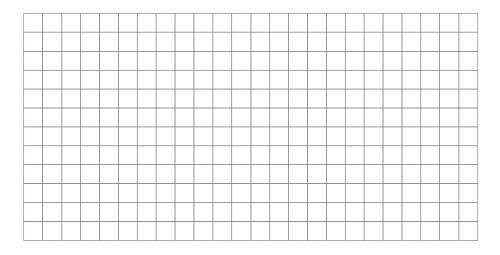
Die Erstarrungstemperatur eines Stoffes ist der Schmelztemperatur gleich. Zum Schmelzen ist die Energie nötig; beim Erstarren wird sie wieder frei.

Die spezifische Schmelzwärme S ist der Quotient aus der zum Schmelzen erforderlichen Wärmemenge Q und der Masse des geschmolzenen Stoffes

$$S = \frac{Q}{m}$$

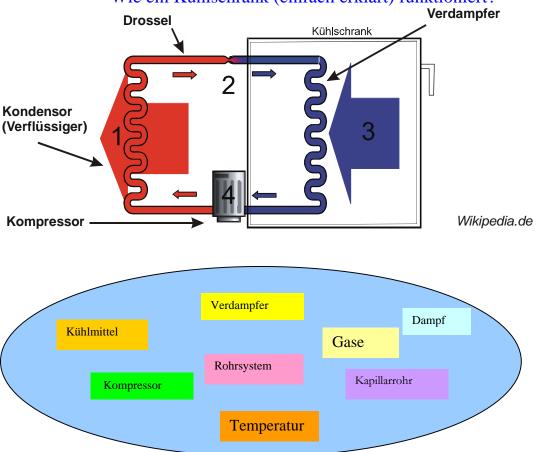
Ihre Einheit [S]=
$$\left[\frac{1J}{1kg}\right]$$

Richtig oder falsch? Bewerte die Sätze.


		richtig	falsch
a.	Die Übergänge zwischen den Aggregatzuständen nennt		
	man Aggregatbewegungen.		
b.	Als Resublimieren bezeichnet man das unmittelbare		
	Übergehen eines Stoffes vom festen in den		
	gasförmigen Aggregatzustand.		
c.	Im Tripelpunkt stehen alle Phasen (Aggregatzustände)		
	im dynamischen Gleichgewicht, d.h. sie können		
	gleichzeitig existieren.		
d.	Der Wert der spezifischen Schmelzwärme gibt an, wie		
	viel Wärme man braucht, um einen Eisblock mit der		
	Masse 1kg zu schmelzen.		
e.	Wärmebilanz ist eine Art des Energieerhaltungssatzes.		

Aufgabe 148 (Versuch)

Peter untersucht die Erwärmung einer Menge Wasser mit Eisstücken eines Würfels und ermittelt folgende Messwertpaare in der Tabelle:


Zeit in min.	0	1	2	3	4	5	6	7
Temperatur in °C	0	0	0	0	11	23	34	43

a) Zeichne ein Temperatur-Zeit-Diagramm für diesen Vorgang.

	Begründe den Temperaturverlauf im Zeitintervall von 0 min bis 3 min.
_	Berechne die während des Zeitintervalls von 3 min bis 8 min vom Wasser aufgenommene Wärme, wenn dessen Masse 500 g beträgt.

Aufgabe 149
Ergänze den unten stehenden Text mit Wörtern aus dem Kasten. (Zwei Wörter sind zu viel.)
Wie ein Kühlschrank (einfach erklärt) funktioniert?

Der Kühlschrank wird mithilfe eines Röhrensystems, das sich im Inneren und Äußeren befindet, gekühlt. In diesem Röhrensystem befindet sich ein (Kühlmittel). Die meisten Kühlmittel haben, bei einem bar Druck, eine Siedetemperatur von ca. -30°C. Wenn das Kältemittel im Verdampfer ist, verdampft das Kühlmittel. Das Kühlmittel bekommt die notwendige Energie aus der Luft im Kühlraum und den eingelagerten Lebensmitteln. Die Temperatur im Kühlschrank sinkt. Das gasförmige Kühlmittel wird von einem Kompressor aus dem Verdampfer gesaugt weitergeleitet. Der Verflüssiger (Kondensor) befindet sich außerhalb des Kühlschrankes an der Rückwand. Im Verflüssiger kondensiert das gasförmige Kühlmittel. Dadurch, dass das umgebende Zimmerluft abgibt, wird es flüssig. Die freiwerdende Kondensationswärme, die dabei entsteht, wird über die Kühlrippen abgegeben. Das flüssige Kühlmittel fließt nun durch ein Kapillarrohr wieder in den Verdampfer. Dadurch, dass das Kapillarrohr (Drossel) den Druck des flüssigen Kühlmittels wieder auf ca. 2 bar reduziert und somit die Siedetemperatur wieder bei ca. -30°C liegt, beginnt das Kühlmittel wieder zu verdampfen.

Aufgabe 150 Ver-, vor- oder über-! Fülle die Lücken aus und erkläre die fett geschriebenen Wörter!
Dergang beimführen vom flüssigen in den gasförmigen Zustand heißt allgemein
dampfung. Dergang vom flüssigen in den gasförmigen Zustand unterhalb des
Siedepunktes heißtdunstung, oberhalb Sieden. Beim Sieden entsteht auch innerhalb
einer Flüssigkeit Dampf und nicht nur an der Oberfläche wie beimdunsten.
Druckerhöhung erhöht auch den Siedepunkt.
dampfung

Rechenaufgaben

Aufgabe 151

Es soll m_1 = 1 kg Eis von t_1 = -20°C auf Wasser von t_2 = 60°C erwärmt werden.

- a) Welche Wärmemenge wird zum Erwärmen des Eises auf 0°C?
- b) zum Schmelzen
- c) zum Erwärmen des Wassers auf 60°C benötigt?

Aufgabe 152

Welches ist die spezifische Wärme von Eisen, wenn 280 J benötigt werden, um 250 g von 30,0 auf 33,50 °C zu erwärmen?

Aufgabe 153

Es sollen 100 l Badewasser von 40°C hergerichtet werden. Zur Verfügung stehen heißes Wasser von 70°C und kaltes von 15°C.

Wieviel heißes bzw. kaltes Wasser muss genommen werden?

Aufgabe 154

2 kg Eis von -5°C werden in 1,5 kg Wasser von +15°C gelegt.

Gib genau an, in welchem Zustand sich die Mischung nach dem Ausgleich befindet.

Aufgabe 155

In einer Warmwasserversorgungsanlage müssen täglich 50 t Wasser mit einer Temperatur von 70°C bereitgestellt werden. Das Frischwasser hat eine Temperatur von 10°C.

Wie viel Wärme ist dafür erforderlich? Wie viel Braunkohle wird täglich benötigt, wenn bei der Verbrennung von 1 kg Braunkohle eine Wärme von 8,5 MJ freigesetzt wird?

Aufgabe 156

In 40 kg Wasser von 10°C werden 5 kg Eis von -30°C gebracht. Dazu werden 2 kg Wasserdampf von 100°C eingeleitet. Welche Mischungstemperatur ergibt sich?

Aufgabe 157

Ein Stahlkörper von $m_1 = 500$ g wird in kochendem Wasser erwärmt. Der erwärmte Stahl wird in ein Kalorimetergefäß aus Messing $m_2 = 200$ g, $c_2 = 386 \frac{J}{kgK}$, mit $m_3 = 1$ kg

Wasserfüllung gelegt. Das Wasser im Kalorimeter erwärmt sich dadurch von t_3 =15°C auf t =19,5°C. Wie groß ist die spezifische Wärmekapazität des Stahlkörpers?

6. Weiß ich das schon? Fragen und Aufgaben zur Thermodynamik.

Aufgabe 158

In diesem Suchrätsel sind 10 Wörter waagrecht versteckt. Finde sie!

N	T	В	P	K	R	Е	I	S	P	R	О	Z	Е	S	S	M
Н	Q	W	Ä	R	M	Е	В	Ι	L	A	N	Z	Q	G	Н	V
T	Е	M	P	Е	R	A	T	U	R	V	P	Z	X	F	S	Z
G	N	C	Z	W	I	R	K	U	N	G	S	G	R	A	D	R
A	О	C	C	U	Н	В	U	M	W	A	N	D	L	U	N	G
N	О	R	M	A	L	В	Е	D	I	N	G	U	N	G	Е	N
S	I	E	D	Е	T	E	M	P	Е	R	A	T	U	R	Η	J
S	C	Н	M	Е	L	Z	T	Е	M	P	Е	R	A	T	U	R
Н	Y	Z	K	G	A	S	K	0	N	S	T	A	N	T	Е	Н
Е	Е	Q	K	K	K	E	L	V	I	N	S	K	A	L	A	S

Aufgabe 159

In diesen Texten ist ein Wort falsch. Finde dieses Wort und setze das richtige unten ein.

a) Den gasförmigen Zustand haben wir in zwei Teile geteilt. Die Aggregatzustandsänderungen sind nur für Dampf möglich. Die Gase sind der Teil des gasförmigen Zustands, der eine so niedrige Temperatur hat, dass er nicht mehr kondensieren kann. Wenn wir Gase unterhalb die sogenannte kritische Temperatur abkühlen, heißen sie jetzt Dampf und können kondensieren oder resublimieren.

ig ist
įş

b) Die feste Körper behalten ihre Gestalt und ihr Volumen unabhängig von Gefäßen. Um die Gestalt oder das Volumen des festen Körpers zu ändern, muss eine Kraft wirken. Wir sagen, dass die festen Körper Gestalt- und Volumenelastizität besitzen. Die Teilchen üben große Adhäsionskräfte aufeinander aus und werden dadurch zusammengehalten. Ihre Abstände zueinander sind sehr gering.

Falsches	Wort	 Richtig ist	

Testaufgaben

Aufgabe 160

Wie groß ist die Mischungstemperatur, wenn wir1 Liter Wasser von 20°C mit 0,5 Liter Wasser von 50°C mischen?

(Spezifische Wärmekapazität von Wasser: $c = 4200 \frac{J}{kgK}$; Dichte von Wasser:= $10^3 \frac{kg}{m^3}$; die

Wärmekapazität des Mischungsgefäßes werde vernachlässigt.)

A. 20°C;

B. 25,0°C;

C. 27,5°C;

D. 30.0°C.

Aufgabe 161

Ein Prozess heißt adiabatisch, wenn gilt:

- A. Es kann keine mechanische Arbeit verrichtet werden.
- B. Die Temperatur bleibt konstant.
- C. Die Änderung der inneren Energie ist Null.
- D. Es findet kein Wärmeaustausch mit der Umgebung statt.

Aufgabe 162

Du lässt die Tür deines eingeschalteten Kühlschranks mehrere Stunden lang weit offen.

Welche Auswirkung hat dies auf die Temperatur in deiner Küche?

- A. Durch den Kühlschrank wird die Temperatur in der Küche nicht beeinflusst.
- B. Die Auswirkung hängt von der Jahreszeiten ab.
- C. Der Kühlschrank erwärmt die Küche.
- D. Der Kühlschrank kühlt die Küche.

Aufgabe 163

Wenn man isobarisch die Gase mit dem Volumen V₀ von 273K um 1 K erwärmt, so erhöht sich das Volumen um

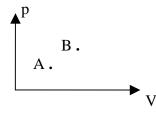
A.
$$\frac{1}{273}$$
 m³

B.
$$\frac{1}{273}$$
 V₀ C. $\frac{1}{274}$ m³ D. $\frac{1}{274}$ V₀

C.
$$\frac{1}{274}$$
 m³

D.
$$\frac{1}{274}$$
 V₀

Aufgabe 164


Die Punkte A und B (siehe Bild) beschreiben zwei Zustände einer konstanten Gasmenge. Die Temperaturen verhalten sich

A.
$$T_A > T_B$$

B.
$$T_A < T_B$$

C.
$$T_A = T_B$$

D.
$$T_A = 2T_B$$

Aufgabe 165

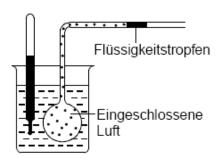
Wie verhalten sich Flüssigkeiten, wenn sie erwärmt werden?

- A) Sie ziehen sich zusammen.
- B) Sie dehnen sich aus.
- C) Sie ändern ihre Farbe.
- D) Sie werden fest.

Aufgabe 166

Zwei Systeme befinden sich im thermischen Gleichgewicht, wenn

- A) zwischen den beiden keine Arbeit ausgetauscht wird.
- B) zwischen den beiden keine Wärme ausgetauscht wird.
- C) ihre Temperaturen gleich sind.
- D) Die Energie gleich Null ist.


Abituraufgabe aus Deutschland – Was müssen unsere deutschen Freunde im Grundkurs Physik lösen?

(Sachsen Zentralabitur 1995)

Grundkurs

Aufgabe B 2: Thermodynamik

- Das ideale Gas kann verschiedene Zustandsänderungen erfahren.
 - Vergleichen Sie die isobare mit der isochoren Zustandsänderung des idealen Gases.
 - b) Skizzieren Sie beide Zustandsänderungen in einem p-V-Diagramm.
- In einem Rundkolben befindet sich Luft, die durch einen Flüssigkeitstropfen abgeschlossen ist. Der Rundkolben befindet sich in einem Wasserbad, dessen Temperatur mit einem eingetauchten Thermometer gemessen wird. So läßt sich die Temperatur der Luft im Rundkolben bestimmen. Aus der Bewegung des Tropfens läßt sich die Volumenänderung beobachten.

Bei der abgebildeten Versuchsanordnung beträgt bei 0,0 °C und 1 013 hPa das Volumen der durch den Flüssigkeitstropfen abgeschlossenen Luft 200,0 cm³.

- a) Berechnen Sie das Volumen der Luft, wenn die Temperatur auf 12,4 °C gestiegen ist. Geben Sie die Volumenzunahme an.
- Berechnen Sie die Strecke, um die sich der Flüssigkeitstropfen in dem waagerecht liegenden Rohr (Innendurchmesser 0,50 cm) nach rechts bewegt.
- c) Die Temperaturerhöhung auf 12,4 °C wird verursacht durch zugeführte Wärme. Erklären Sie, warum diese Wärme nicht nur der Erhöhung der inneren Energie der eingeschlossenen Luft dient. Berechnen Sie die Differenz zwischen zugeführter Wärme und Erhöhung der inneren Energie.
- Zur Berechnung von Zustandsänderungen des idealen Gases benutzt man folgende Gleichung:

$$\frac{p_1 \cdot V_1}{T_1} = \frac{p_2 \cdot V_2}{T_2}$$

Leiten Sie diese Gleichung aus der Gleichung

$$p \cdot V = m \cdot R \cdot T$$

her.

- Ein mit Helium gefüllter Wetterballon hat am Erdboden bei der Temperatur 20,2 °C und dem Luftdruck 1021 hPa das Volumen 12,5 m³.
 - a) Berechnen Sie das Volumen in größerer Höhe, wenn dort eine Temperatur von 27,2 °C und ein Druck von 490 hPa herrschen.
 - b) Berechnen Sie die Masse des Füllgases.

IV. Mechanische Schwingungen und Wellen

1. Harmonische Schwingungen

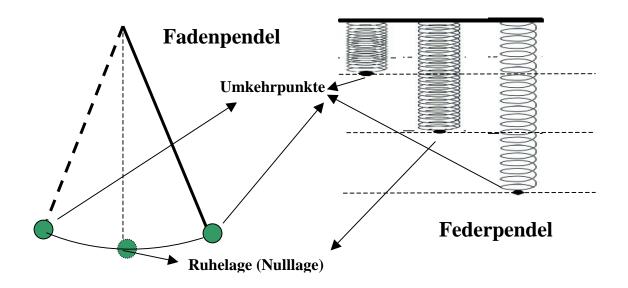
Fadenpendel <i>n</i>	
Federpendel n	
Ruhelage f	
Gleichgewichtslage f	
Umkehrpunkt m	
Rückstellkraft f	
Schwingungsweite <i>f</i>	
Elongation f	
Auslenkung f	
Ausschlag m	
Periode f	
Schwingungsdauer f	

Grundwissen

Eine **Schwingung** (*vibration*, *oscillation*) ist eine periodische, d. h. in gleichen Zeiten, sich wiederholende Bewegung eines Körpers um seine Ruhe- oder Gleichgewichtslage. Schwingungen, deren Weg-Zeit Diagramm eine Sinus- oder Kosinuskurve ist, werden **harmonische Schwingungen** genannt. Für jede harmonische Schwingung gilt:

Zeit-Elongation-Gesetz $x(t) = A \cdot \sin \omega t$

Zeit-Geschwindigkeit-Gesetz $v(t) = \omega \cdot A \cdot \cos \omega t$


Zeit-Beschleunigung-Gesetz $a(t) = -\omega^2 \cdot A \cdot \sin \omega t$

LINEARES KRAFTGESETZ

Wirkt auf ein Objekt bei Auslenkung aus der Ruhelage eine rücktreibende Kraft proportional zur Auslenkung, so kann das Objekt um die Ruhelage herum harmonische Schwingungen ausführen.

F~ x Kennzeichen einer harmonischen Schwingung

- Die Linearbewegung der Schwingung stimmt mit der Projektion einer passenden Kreisbewegung überein.
- Die Schwingung verläuft sinusförmig in der Zeit Die rücktreibende Kraft ist proportional zur Auslenkung

Beantworte	die	Fragen.
------------	-----	---------

1. Wo ist die Geschwindigkeit des Pendels am größten ?
2. Welche Kräfte wirken bei der Pendelsbewegung?
3. Wie ist die Rolle der Trägheitskraft bei der Bewegung des Pendels?

Aufgabe 169

Bilde vollständige Sätze und schreibe sie in dein Heft.

	Satzanfang		Satzende
1	Liegt bei dem schwingungsfähigen System ein lineares Kraftgesetz F ~ x vor	A	bei denen sich ein physikalischer Zustand zeitlich periodisch ändert.
2	Eine mechanische Schwingung, die mit der Projektion einer gleichförmigen Kreisbewegung übereinstimmt,	В	so muss das Geschwindigkeits-Zeit- Diagramm eine Cosinus-Kurve sein.
3	Schwingung ist ein Vorgang,	С	heißt harmonische Schwingung.
4	Die Geschwindigkeit ist am größten genau beim Durchgang durch die Gleichgewichtslage,	D	so kommt es zu einer harmonischen Schwingung.
5	Wenn das Weg-Zeit-Diagramm der harmonischen Schwingungen eine Sinus-Kurve ist,	Е	und in dem Umkehrpunkt (bei maximaler Elongation) ist sie Null

Ergänze den unten stehenden Text mit Wörtern aus dem Kasten.

schwingt	periodische	Rückstellkraft	Periode	Auslenkung	Ruhelage
Umkehrpunkt	t Federpendel	träge Schwi	ngung	Amplitude	Elongation
	Frequenz	Schwingung	dauer	Pendel	
Ein	schw	ingt, wenn man e	s aus seine	er	. auslenkt und
dann loslässt. D	Dabei bewegt es sic	ch von einem		zum anderen.	
Das ist	t ein	Lässt ma	n es auße	rhalb der Ruh	elage los, so
	. es. Es bewegt sid	ch dabei in gleich	en Zeitabstä	inden von einem	Umkehrpunkt
zum anderen.	Diese Bewegung	g ist eine	•••••	Bewegung. Mar	n nennt diese
periodische Bev	wegung Schwingu	ng.			
Auf di	esen Körper, de	er sich außerhal	seiner F	Ruhelage befind	let, wirkt die
	Sie bringt den l	Körper in die Ruh	elage zurüc	k. Der Körper bl	leibt aber nicht
in der Ruhelage	e, sondern schwing	gt weiter. Der Kö	per bewegt	sich über die Ru	ihelage hinaus,
weil er	Masse be	sitzt.			
Eine me	echanische	ist also	eine period	dische Hin- und	Herbewegung
eines Körpers u	ım seine Ruhelage	. .			
Eine me	echanische Schwin	igung entsteht, we	nn auf einei	n Körper mit träg	ger Masse eine
Rückstellkraft e	einwirkt.				
Der Abs	stand zwischen Ru	helage und Umke	hrpunkt heil	ßt	
Die Er	ntfernung eines	schwingenden P	unktes von	der Ruhelage	nennen wir
Auslenkung od	er	•			
Die größ	ßte Elongation des	Pendels ist die A	mplitude.		
Für jede	e volle Schwingun	ig benötigt das Pe	ndel eine be	estimmte Zeit. M	an nennt diese
Zeit die Schwi	ingungsdauer. Die	e Schwingungsda	uer T gibt	also an, wie la	nge eine volle
Schwingung da	nuert. Für "		auch "		
Die	f ist c	der Quotient aus d	er Anzahl d	ler Schwingunge	n und der Zeit.
Für "Frequenz	" sagt man auch	"Schwingungszah	ıl". Die Scl	hwingungsanzah	l gibt also die
Anzahl der Sch	nwingungen pro Se	kunde an.			
Je größe	er die	des Pendels au	ıs der Ruhe	lage ist, desto gro	ößer ist die
Rückstellkraft.	Auslenkung und	Rückstellkraft sind	ł also vonei	nander abhängig	•

Welche Aussagen beschreiben die Eigenschaften einer Schwingung? Kreuze das Richtige an!

Kreuz

- A Bei den Schwingungen gelten die Newtonschen Grundgesetze nicht.
- B Die Linearbewegung der Schwingung stimmt mit der Projektion einer passenden Kreisbewegung überein.
- C Die Kraft ist der momentanen Auslenkung immer entgegengesetzt.
- Die Auslenkung der harmonischen Schwingung steigt in der Zeit der Bewegung.
- E Die rücktreibende Kraft ist proportional zur Auslenkung.

Rechenaufgaben

Aufgabe 172

Wie groß ist die Elongation einer Sinusschwingung, wenn die Amplitude 10cm und die Frequenz 5 Hz beträgt,

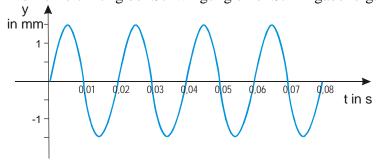
a) 0,02 s, b) 0,05 s und c) 0,1 s nach dem Nulldurchgang?

Aufgabe 173

Welche Frequenz hat die Sinusschwingung der Amplitude A = 10cm, die erstmalig die Elongation x = 5cm 0.084 s nach Durchgang durch die Nulllage erreicht hat?

Aufgabe 174

Wie viel Sekunden nach dem Nulldurchgang erreicht die Elongation einer Sinusschwingung von $A=20~\mathrm{cm}$ und $f=50~\mathrm{Hz}$ die Werte


a) 5cm, b) 10cm und c) 20cm?

Aufgabe 175

Die Elongation einer Sinusschwingung von 15s Dauer und 10cm Amplitude verdoppelt sich innerhalb von 1s. Wie groß sind diese Elongationen?

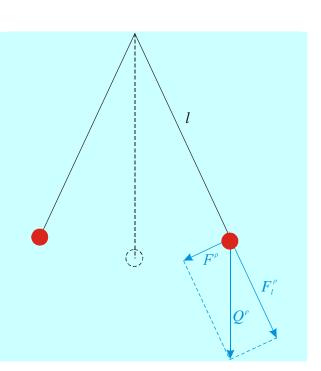
Aufgabe 176

Die Aufzeichnung der Schwingung einer Stimmgabel ergab folgendes y-t Diagramm:

- a) Ermittle Sie die Amplitude, die Periodendauer und die Frequenz der Schwingung.
- b) Welche Art der Schwingung ist dargestellt?
- c) Begründen Sie Ihre Entscheidung.

2. Das Fadenpendel

Isochronismus mVorgehensweise f


Grundwissen

Ein Fadenpendel schwingt bei hinreichend kleiner Amplitude harmonisch.

Seine Periodendauer ist dann

$$\mathbf{T} = \mathbf{2}\pi \sqrt{\frac{l}{g}}$$

Als **Isochronismus** bezeichnet man die Gleichförmigkeit von Schwingungen, also ihre von äußeren Störeinflüssen unabhängige Frequenzkonstanz.(Wikipedia.de)

Aufgabe 177

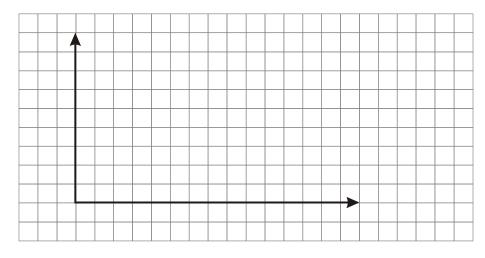
Beende die Sätze mit den Satzenden, die Du in der nachfolgenden Ellipse findest!

am Pol schneller, da dort die
Erdbeschleunigung g größer ist und am
Äquator langsamer wegen der dort
kleineren Erdbeschleunigung.

am selben Punkt der Erde gleich
schnell.

aber unabhängig von der Masse und
unabhängig von der Amplitude (bei
kleinen Ausschlägen),

desto langsamer schwingt es.


1) Die Schwingungsdauer T ist nur abhängig von l und g,

.....

2) Alle Pendel der gleichen Pendellänge, aber verschiedener Masse schwingen							
3) Das Pendel schwingt an verschiedener							
4) Je größer die Pendellänge,							
Aufgabe 178							
Erläutere am Beispiel eines Fadenpende Amplitude	els die Begriffe:						
Periodendauer							
Gleichgewichtslage							
Umkehrpunkt							
Aufgabe 179							
Experimente mit dem Fadenpendel!!!							
a) Bestätige mit Hilfe eines Experimen Erläutere auhand der Skizze die Durchfü	ites, dass für ein Fadenpendel gilt: $T \sim \sqrt{l}$ ihrung des Versuchs.						
Versuchsaufbau	Erklärung der Durchführung						

Bei Durchführung des Experimenten hilft Dir eine Tabelle und das Diagramm!

Länge des Pendels [m]	0,2	0,3	0,5	0,8	1
Zeit der 10 Schwingungen [s]					
Schwingungdauer [s]					

ie rolgerungen	
Ermittle mit Hilfe eines Fadenpendels die Fallbeschleunigung.	
enutze ein Pendel von 1 m Länge. Miss die Zeit zur Bestimmung der Periodenda enigstens 10 Perioden!	uer für
rläutere Deine Vorgehensweise.	

Entwirf eine Messwerttabelle und trage die gemessenen Werte ein!

Leite aus der Periodendauer die Formel für die Erdbeschleunigung her!

Berechne jetzt die Erdbeschleunigung (Ortsfaktor, Fallbeschleunigung) in deinem Wohnort!

Stimmt dein Ergebnis mit dem Wert überein, den du im Buch hast? Warum gibt es solche Unterschiede? Bereite eine Diskussion vor!

Schreibe diesen Text im Passiv!!!

Man untersucht die Abhängigkeit der Schwingungsdauer von verschiedenen Faktoren und abschließend zeigt man die Phasenraumdarstellung. Dazu führt man in Anschluss an eine Vorstellung des Versuchsaufbaus verschiedene Messreihen durch. Die erste untersucht dabei den Einfluss der Pendellänge auf die Schwingungsdauer, wobei man drei unterschiedliche Längen zeigt. Man erforscht die Abhängigkeit von der Pendelmasse mit zwei gleich großen Körpern unterschiedlicher Dichte. Im dritten Teil stellt man verschiedene Auslenkungen und ihren Einfluss auf die Schwingungsdauer dar. Abschließend zeigt man die Phasenraumdarstellung und ihre zeitliche Entwicklung bei einem realen Pendel

-	tene Lintwicklung bei einem remen re	

Rechenaufgaben

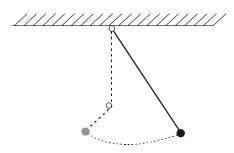
Aufgabe 181

An einer ausgesuchten Stelle auf der Erde beträgt die Schwerebeschleunigung g genau 9,81 m/s². Dort wurde ein Fadenpendel so eingerichtet, dass seine Schwingungsdauer 2,00 Sekunden beträgt. An einem anderen Ort vollführt es täglich 100 Schwingungen mehr. Wie groß ist g dort?

Aufgabe 182

Ein Körper der Masse 2,5 kg hängt an einem 1,4 m langen Faden. Berechne die Periodendauer für einen Ort, an dem die Erdbeschleunigung 9,81 ms⁻² beträgt.

Aufgabe 183


An einem anderen Ort misst man mit demselben Pendel die Schwingungsdauer 2,375 s. Wie groß ist dort die Erdbeschleunigung?

Aufgabe 184

Ein Fadenpendel macht in der Minute $n_1 = 30$ Schwingungen. Wie muss man das Pendel verändern, wenn es in der gleichen Zeit $n_2 = 90$ Schwingungen ausführen soll?

Aufgabe 185

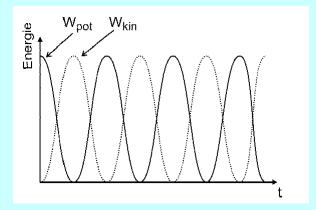
30 cm unter dem Aufhängpunkt eines 50 cm langen Fadenpendels befindet sich ein fester Stift S, an den sich der Faden während des Schwingens vorübergehend anlegt. Wie viel Schwingungen führt das Pendel in einer Minute aus?

3. Energiesatz bei Schwingungen

Grundwissen

Ohne Reibung muss die einmal zugeführte Energie im System verbleiben. Die Energie der harmonischen Schwingung entspricht zu jedem Zeitpunkt der anfänglich dem System zugeführten Energie. **Es gilt der Energieerhaltungssatz**.

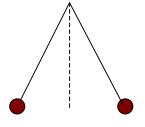
kinetische Energie


$$E_k = \frac{1}{2}m\omega^2 A_0^2 \sin^2 \omega t$$

potentielle Energie

$$E_{p} = \frac{1}{2}m\omega^{2}A_{0}^{2}\cos^{2}\omega t$$

Gesamtenergie

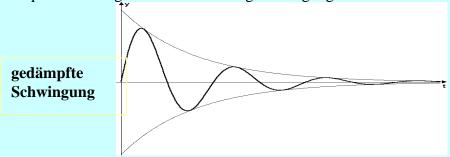

$$E_{Ges} = \frac{1}{2}m\omega^2 A_0^2$$

Bei einer ungedämpften Schwingung ist die Gesamtenergie (kinetische Energie + potentielle Energie) konstant. Die Gesamtenergie des harmonischen Oszillators ist proportional zum Quadrat der Amplitude.

Aufgabe 186 (Energieumwandlung am schwingenden Fadenpendel!)

Wo sind die Auslenkung, die kinetische und die potentielle Energie maximal, minimal und gleich Null. Fülle die Tabelle aus!

Position	Umkehrpunkt 1	Ruhelage	Umkehrpunkt 2	Ruhelage
Auslenkung				
$\mathbf{E_{kin}}$				
$\mathbf{E}_{\mathbf{pot}}$				


4. Ged	dämpfte	und erzw	rungene S	Schwingu	ıngen, F	Resonanz

Dämpfung f	
gedämpfte Schwingung f	
erzwungene Schwingung f	
Resonanz f	
Erregerfrequenz f	
Eigenfrequenz f	
Schwingkreis f	
Resonanzkurve f	

Grundwissen

Alle wirklichen Schwingungen halten nicht ewig an. Wegen der Reibung verringert sich die Amplitude der Schwingung und die Schwingung verläuft "*gedämpft*". Je stärker die Dämpfung der Amplitude ist, um so rascher klingt die Amplitude der Schwingung ab

Alle schwingfähigen Systeme kann man durch eine **Eigenfrequenz** \mathbf{f}_0 charakterisieren. Mit solcher Frequenz schwingen sie nach einmaliger Anregung.

Um Schwingungen aufrecht zu erhalten, ist es notwendig, den Energieverlust durch Zufuhr von Energie auszugleichen. Solche Schwingungen nennt man **erzwungene Schwingungen.**

Das System wird von außen durch eine ständig einwirkende Kraft versetzt. Der wichtigste Fall ist dann, wenn die Kraft eine harmonische externe Kraft ist (d.h. eine Kraft hat entweger die Sinus- oder die Kosinusform). Dabei wird Energie von außen auf das System übertragen. Die Frequenz, mit der Energie zugeführt wird, nennt man **Erregerfrequenz** f_E.

Die Energieübertragung ist besonders effektiv im Resonanzfall.

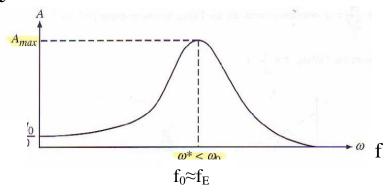
Bedingung für Resonanz: $f_E = f_0$

Resonanz bedeutet, dass ein System, das harmonisch erregt wird, bei seiner Eigenfrequenz besonders viel Energie absorbiert.

Ist der Energieverbrauch durch Reibung zu klein, so zerstören die entstehenden Kräfte schließlich das System – es kommt zur **Resonanzkatastrophe.**

Aufgabe 187

Leider ist der Text ein bischen unkomplett. Korrigiere! Du erhälst eine wichtige Eigenschaft der Resonanzerscheinung.


```
Resona__ bedeut__ nic__, da__ b__ d__ Eigenfreque__ f_0 d__ Amplitu__ maxim__ wi__! Resona__ bedeut__ vielme__, da__ d__ Syst__ b__ d__ Eigenfreque__ f_0 maxim__ Energ__ absorbie__!
```

Bitte an der richtigen Stelle einsetzen.

Anregung | Aufschwingen | Energie | Übertragung | System | Reibung |

Wenn dem _ _ _ von außen durch eine ständig einwirkende Kraft (die sich im einfachsten Fall periodisch, harmonisch mit der Zeit ändert und eine feste Frequenz hat) in Schwingungen versetzt wird, dann schwingt es mit der Frequenz, die die anregende Kraft aufprägt: "erzwungene Schwingung". Dabei wird _ _ _ von außen auf das System übertragen. Diese _ _ _ ist aber nicht bei allen Frequenzen der anregenden Kraft gleich effektiv. Beispielsweise kann bei zu hohen Frequenzen das System der _ _ _ aufgrund der Trägheit nicht mehr folgen und verharrt in Ruhe, es wird gar keine Energie eingekoppelt. Bei sehr geringen Frequenzen folgt das System der Anregung verzögerungsfrei, die Amplitude des Systems ist genau so groß wie die Amplitude der Anregung. Zwischen diesen Extremen gibt es einen Bereich, in dem die Energieübertragung sehr gut funktioniert, und auch bei kleinen Amplituden der Anregung bauen sich sehr große Amplituden im System auf. Das weitere " _ _ _ _ " wird dann dadurch begrenzt, dass die _ _ _ _ schließlich die zugeführte Energie immer wieder verzehrt.

Resonanzkurve

Die Hängebrücke über das Tacoma -Tal im US-Bundesstaat

Brücken sind generell ein heikles Thema!

1831 bringt ein Trupp von 60 im Gleichschritt marschierender Soldaten die Broughton-Hängebrücke über dem Irwell-Fluß in Manchester zum Einsturz. 1850 brachten etwa 500 Mann eines französischen Bataillons eine Hängebrücke zum Einsturz, wobei 226 Soldaten den Tod fanden.

Washington galt im Jahr ihrer Erbauung 1940 als Glanzstück der Ingenieurskunst. Doch schon bald zeigte sich, dass sie bei starkem Wind zu schwingen begann. Vier Monate nach der Einweihung, am 7. November 1940, geriet die Brücke während eines Sturms so stark in Schwingung, dass sie schließlich einstürzte.

5. Mechanische Wellen

Welle $(-n)$ f	
Störung f	
Träger m	
Querwelle f	
Transversalwelle	
Longitudinalwelle	
Längswelle	
Wellental n	
Wellenberg m	
Wellenlänge f	
Wellenzahl f	
Wellenvektor m	
zeitabhängiger Vorgang m	

Grundwissen

Eine Welle ist ein orts- und **zeitabhängiger Vorgang**, bei dem die Energie durch den Raum transportiert wird, ohne dass sich Materie von ihrem jeweiligen Ort entfernt. Die Welle besteht aus **Störungen**, die nacheinander erfolgen. Bei der mechanischen Wellen ist auch **ein Träger** notwendig

Eine harmonische Welle ist eine Welle, wo die Elemente des Wellenträgers periodische Schwingungen ausführen.

Die Wellengeschwindigkeit ist eine solche Geschwindigkeit, mit der sich der Wellenberg bewegt

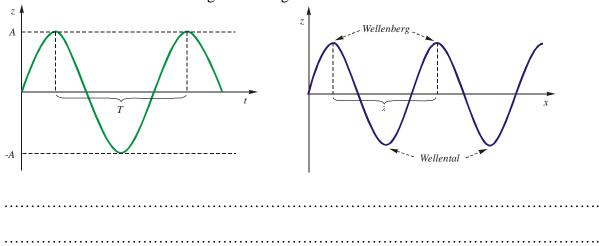
$$V = \frac{\lambda}{T}$$
 (λ - Wellenlänge, **T** Schwingungsdauer)

Mit der **Wellengleichung** lässt sich die y-Auslenkung eines Teilchens an der Stelle x der Welle zum Zeitpunkt t berechnen.

$$Z(x,t) = A \sin \left[\left(\frac{2\Pi}{T} \right) t + \left(\frac{2\Pi}{\lambda} \right) x \right]$$

Schüttelsatz: Bitte die Wörter ordnen.

Eine einem entspricht Welle physikalischen Vorgang , ausbreitet bei welchem
Schwingung eine sich Raum im .
übertragen Impuls Energie und Oszillatoren Dabei wird zwischen .
Was erklärt der Satz?


Aufgabe 190

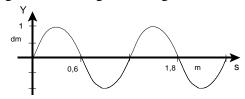
Ordne die Definitionen.

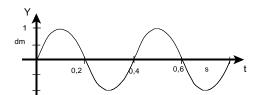
1. Wellenberg	a. ist eine räumliche und zeitliche Zustandsänderung physikalischer Gröβen, die nach bestimmten periodischen Gesetzmäβigkeiten erfolgt.	
2. Wellental	b. ist der Abstand zwischen zwei Punkten gleicher Phase bei einer Welle.	
3. Wellengeschwindigkeit	c. bezeichnet insbesondere bei einer fortschreitenden Welle die Stellen maximaler negativer Auslenkung.	
4. Welle	d. bezeichnet insbesondere bei einer fortschreitenden Welle die Stellen maximaler positiver Auslenkung.	
5. Wellenlänge	e. eine Geschwindigkeit, mit der sich der Wellenberg bewegt. Deren Betrag gibt die Formel $\mathbf{v} = \lambda / \mathbf{T}$ an.	

Aufgabe 191

Worin liegt der grundlegende Unterschied des t-z Diagramms der Schwingung eines Wellenteilches mit dem x-z Diagramm der gleichen Welle?

<u>Teile den Text. Bilde einzelne Wörter und Sätze. Auf der Grundlage des Textes</u> beantworte die Fragen.


Ineinem Trägerderauselastischgekoppelten Massenteilchenbes tehtkanneinemechanische Welleerzeugtwerden Wennmannämlichein esdieser Teilchenin Schwingung versetztwerden die Nachbarteilchenin folgeder Kopplungzuerzwungen en Schwingungen angeregt Jeweiter ein Teilchen vom Erregerent ferntist destogrößerist der Phasen unterschiedzwischenseiner Schwingungund der Schwingung des Erregers Die Teilchenschwingen nichtet waalleimselben Moment durchihre Nulllages onder nführen diesen Vorgangzeitlich nach ein ander aus Dadurchwerden die verschieden en Schwingungsphasen inden en sich die Erregerschwingung zeitlich nach ein ander befindet räumlich neben ein ander gelegt Auf diese Weise entsteht eine Welle.


		Was hat eine Welle mit erzwungenen Schwingungen zu tun?
	2.	Wie erklärst du das Problem der verschiedenen Schwingungsphasen des Wellenträgers?
•••		

Rechenaufgaben!

Aufgabe 193

Gegeben sind folgende Diagramme:

Ermittle die Amplitude, Wellenlänge und Periodendauer! Berechne die Frequenz und die Ausbreitungsgeschwindigkeit der Welle und nenne Ihre Ergebnisse!

Während 12 Schwingungen innerhalb von 3 Sekunden ablaufen, breitet sich eine Störung um 3,6 m aus. Berechne Wellenlänge, Frequenz und Ausbreitungsgeschwindigkeit der Welle.

Aufgabe 195

Die Auslenkung einer Welle wird durch die Gleichung $y(t,x) = 0.26 \cdot \sin \pi (t-3.7x)$ beschrieben. Wie groß ist die Auslenkung für t = 38s und x = 13 m?

Aufgabe 196

Eine sinusförmige Welle der Wellenlänge 10cm, der Frequenz 400Hz und der Amplitude 2,0cm breitet sich auf einem Seil in x-Richtung aus.

- a) Durch welche Gleichung wird diese Welle beschrieben?
- b) Welche maximale Geschwindigkeit hat ein Punkt auf dem Seil?
- c) Welche Geschwindigkeit hat die Welle?

Aufgabe 197

Mechanische Wellen können furchtbare zerstörerische Wirkungen verursachen. Auf den Bildern werden zwei Arten solcher traurigen Erscheinungen gezeigt. Erkenne, welche Erscheinungen sie betreffen und schreibe ein paar Worte über solche Wellen!

2 2 2 1	
Mexico 2004	
De la	

Thailand 2004

6. Reflexion und Brechung

Reflexion f	
Brechung f	
Einfallswinkel m	
Reflexionswinkel	
Brechungswinkel	
Wellennormale f	

Grundwissen

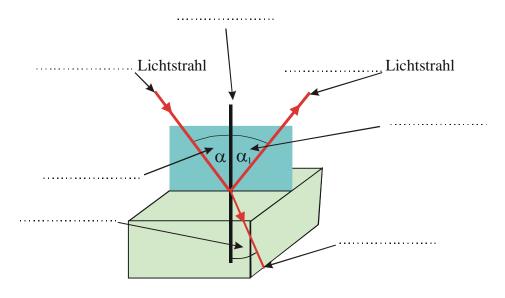
Reflexionsgesetz von Snellius

Der Einfalls- und Reflexionswinkel sind maßgleich: $\alpha=\beta$. Einfallende Welle, Lot und reflektierte Welle liegen in einer Ebene. Die Welle wird von demselben Punkt reflektiert, wo sie eingefallen ist

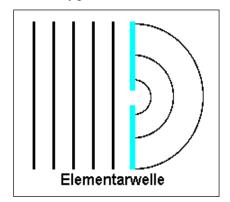
Brechungsgesetz von Snellius

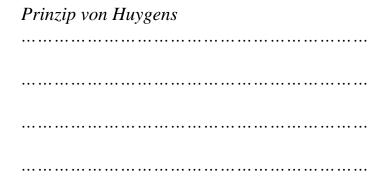
Wenn eine Welle senkrecht auf die Grenze zwischen zwei Medien (Einfallswinkel = 0) fällt, tritt die Erscheinung der Brechung nicht auf (Brechungswinkel = 0).

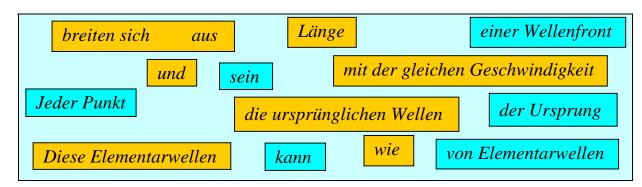
Wenn der Einfallswinkel ungleich 0 ist (eine Welle fällt schräg auf die Grenze), dann gilt:


$$\frac{\sin\alpha}{\sin\beta} = \frac{v_1}{v_2}$$

wobei v_1 und v_2 Geschwindigkeiten der Wellen in beiden Stoffen und α - Einfallswinkel, β - Brechungswinkel sind.


Die Radien der einfallenden, gebrochenen Wellen und die Wellennormale liegen in einer Ebene.


Aufgabe 198


Ordne den angegebenen Winkeln und Strahlen aus der Zeichnung ihre Namen zu

Formuliere aus den im Kasten stehenden Wörtern zwei Sätze. – Du bekommst das Prinzip von Huygens.

Aufgabe 200

Welcher Satz passt zur Reflexion und welcher zur Brechung?

Bei der..... überschreitet die Welle die Oberflächegrenze zwischen zwei Medien.

Bei der liegen die ankommende, die reflektierende Welle und die Wellennormale in einer Ebene.

Bei der wird die Geschwindigkeit geändert.

Bei der sind die zwei entstehenden Winkel unterschiedlich.

Bei dersind die zwei entstehenden Winkel gleich groβ.

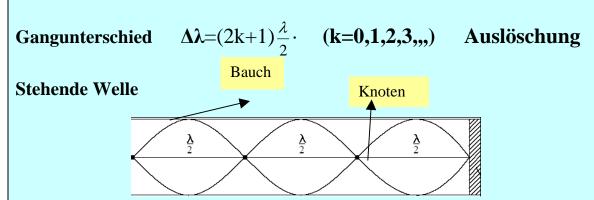
Aufgabe 201

Welcher Satz ist falsch und welcher richtig?

	richtig	falsch
Bei der Reflexion sind der Einfallswinkel und der Ausfallswi	nkel	
ganz anders.		
Bei der Brechung sind die Geschwindigkeiten in beiden Med	ien	
immer gleich.		
Im Medium mit einer größeren Geschwindigkeit ist die		
Wellenlänge kleiner		
Wenn eine Welle schräg auf die Grenze zwischen zwei Medi	en	
trifft, gibt es keine Brechung.		
Wenn eine Welle senkrecht auf die Grenze zwischen zwei M	edien	
trifft, gibt es keine Brechung.		
Die Geschwindigkeit ist im tiefen Wasser größer als im seich	iten.	

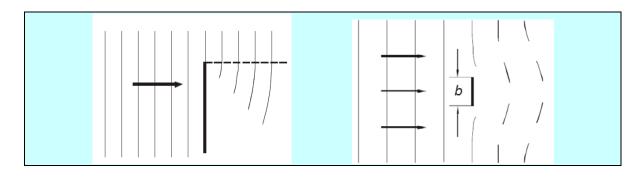
7. Interferenz und Beugung der mechanischen Wellen

Interferenz f	
Difraktion f	
Überlagerung f	
Auslöschung f	
Verstärkung f	
Wellenberg m	
Wellental n	
Blende f	
Spalt m	
Schlitz m	
Knoten m	


Grundwissen

Unter dem Begriff **Interferenz** versteht man die Überlagerung von Wellen, die aus zwei oder mehr Quellen stammen. Interferenz kann durch Reflexion, Brechung und Beugung hervorgerufen werden.

Konstruktive Interferenz gilt, wenn zwei entgegenlaufende Wellen die gleichen Phasen haben; es trifft sich der Wellenberg der ersten Welle mit dem Wellenberg der zweiten Welle und es kommt zur Verstärkung.


Gangunterschied
$$\Delta \lambda = k \cdot \lambda$$
 (k=0,1,2,3,,,) Verstärkung

Destruktive Interferenz gilt, wenn zwei entgegenlaufende Wellen gegenphäsig sind. Der Wellenberg trifft sich mit dem Wellental und es kommt zur Auslöschung. Wenn die Amplituden gleich groß sind, dann löschen sich die Wellen vollständig aus. Die neue Auslenkung wird gleich Null sein.

Eine **stehende Welle** entsteht aus der Überlagerung zweier gegenläufig fortschreitender Wellen gleicher Frequenz und gleicher Amplitude. Ist die Amplitude nicht gleich, so bilden sich keine ortsfesten Knoten und Bäuche, folglich auch keine Stehende Welle.

Beugung oder **Diffraktion** ist die "Ablenkung" von <u>Wellen</u> an einem Hindernis, sodass die Welle in den dahinter liegenden geometrischen Schattenraum eindringt.

Aufgabe 202 (Lückentext)

Unter Interferenz verstent man diezweier oder menrerer
mit fester Phasenverschiebung. Interferenzerscheinungen
können beim Zusammentreffen aller Arten von Wellen auftreten.
Wenn die zwei Wellen die gleiche oder fast gleiche Amplitude haben, und ein Wellenberg
trifft auf einen anderen Wellenberg, so sich die Auslenkung zu
einem doppelt so großen Wenn Wellental auf Wellental trifft,
kommt es zur
kommt es zur Die beiden Wellen schwingen hier,
es trifft also immer Wellenberg auf und umgekehrt.

Rechenaufgaben

Aufgabe 203

Eine Welle tritt von einem Gebiet kleinerer in ein solches größerer Ausbreitungsgeschwindigkeit über. Wie wird die Welle gebrochen? Wie ändert sich die Wellenlänge?

Aufgabe 204

In welchem Verhältnis stehen die Ausbreitungsgeschwindigkeiten zueinander, wenn der Einfallswinkel 35° und der Brechungswinkel 70° betragen?

Aufgabe 205

Eine Wasserwelle mit einer Frequenz von 13 Hz trifft mit der Geschwindigkeit 23 cm/s unter einem Winkel von 4° auf ein Flachwassergebiet, wo ihre Wellenlänge mit 1,54 cm gemessen wird. Berechne die Ausbreitungsgeschwindigkeit im flachen Wasser und den Brechungswinkel.

Aufgabe 206

Die Fortpflanzunggeschwindigkeit einer Welle beträgt v_1 =30 $\frac{cm}{s}$. Im seichten Wasser verringert sie sich auf v_2 =20 $\frac{cm}{s}$. Die ursprüngliche Wellenfläche hat an der Grenzfläche zum Lot einen Einfallswinkel von α =40°. Berechne den Brechungswinkel!

	8. Elemente der Akustik
	Schall m Schallerreger m (= Schallquelle) f Medium n Klang m Geräusch n Knall m Schallintensität f Schallpegel m
	Grundwissen
	Akustik – die Lehre vom Schall
	Als Schall bezeichnet man die sich wellenartig ausbreitende räumliche und zeitliche Druckänderung eines elastischen Mediums. Der Körper, von dem der Schall ausgeht, heiβt Schallerreger oder auch Schallquelle. Physikalisch gesehen ist Schall eine Welle. Der Schall pflanzt sich also durch die Luft fort bis zu den Ohren in kleinen Schwingungen oder Schallwellen. Schallwellen können sich auch durch feste und flüssige Stoffe bewegen, und zwar schneller als in der Luft, weil die Moleküle dichter beieinanderliegen. Schallereignisse, die durch sinusförmige Schwingungen hervorgerufen werden, bezeichnet man als reine Töne. Die Menschen können den Schall mit der Frequenz zwischen 16 Hz-20 kHz wahrnehmen. Sonst unterscheidet man auch Ultraschall mit einer Frequenz zwischen 20 kHz-500 MHz.
	Infraschall mit einer Frequenz unter 16 Hz ufgabe 207 (Lückentext!!) er Schall entsteht durch
Sc	halls hängt vom ab. Die größte Schallgeschwindigkeit betritt
	Im kann sich der Klang nicht ausbreiten, weil dort sich keine
	befinden.
Di	e einfachste Methode um Schallgeschwindigkeit zu berechnen ist die

Teilchen; Medium; 330-340m/s; Feuchtigkeit; in der Luft; Wellenberg, Resonanzmethode; Zusammenstoß; Reflexion, Dichte, Temperatur; feste Körper; Vakuum

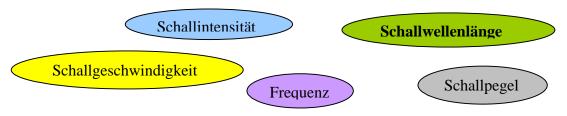
...... Dadurch erfahren wir, dass diese im Luft gleich ist und

hängt von der und der Luft ab.

Welcher Satz ist falsch und welcher richtig?

- a) Die Schallwelle kann sich in der Luft, im Wasser und im Vakuum ausbreiten.
- b) Ultraschall ist für Menschen nicht hörbar, weil das menschliche Ohr Frequenzen über 20 kHz wahrnimmt.
- c) Delphine und einige Insektenarten können Ultraschall hören.
- d) Akustische Wellen sind die Wellen, die nur der Mensch hören kann.

Aufgabe 209


Beende die Sätze mit folgenden Wörtern:

Ton	Klang	Geräusch	Knall	
Ion	mung	Gerausen	Ixitutt	

- Wenn ein Körper regelmäßig schwingt, dann entsteht ein
- Mehrere Töne zusammen ergeben einen.....
- Wenn ein Körper völlig unregelmäßig schwingt, dann entsteht ein.....
- Wenn ein Körper einige heftige Schwingungen ausführt, dann entsteht ein.....

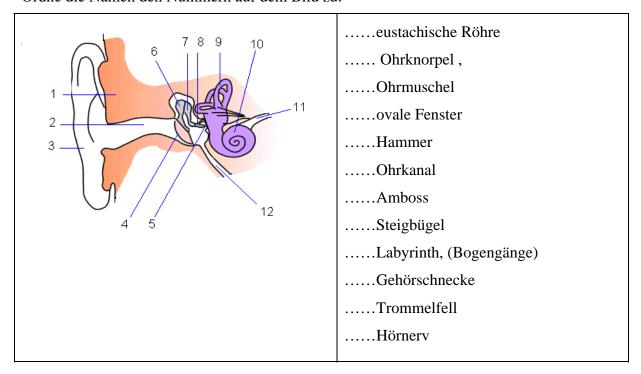
Aufgabe 210

Ordne die richtigen Namen den Formeln zu.

	Formel	Einheit	Was symbolisieren die einzelnen Buchstaben?
	$c = \frac{\lambda}{T}$	$\left[\frac{m}{s}\right]$	
•••••	$\lambda = c \cdot T$	[m]	
	$f = \frac{1}{T}$	$\left[\frac{1}{s}\right] = [Hz]$	
	$I = \frac{P}{S}$	$\left[\frac{W}{m^2}\right]$	
	$L = 10 \log \frac{I}{I_0}$	[dB]	

Fülle die Lücken mit physikalisch richtigen Begriffen aus!

Subjektive Größen


die Klangfarbe, die Tonhöhe, die Lautstärke

Dieist immer mit der Frequenz verbunden. Je größerer die Frequenz ist, desto höher ist der Ton. In der Praxis bezeichnet man die akustischen Schwingungen mit Frequenzen von 16 bis 300 Hz als tiefe Töne, von 300 bis 3000 Hz mittlere Töne, von 3 bis 20 kHz hohe Töne

Dieeines <u>Schalls</u> ist ein Maß dafür, wie laut ein bestimmter Schall vom Menschen als <u>Hörereignis</u> empfunden wird. Die wahrgenommene Lautstärke ist eine <u>psychoakustische</u> Größe, die von mehreren Faktoren abhängt: dem Schalldruckpegel, dem Frequenzspektrum sowie dem Zeitverhalten des Schalls.

...... ist die Eigenschaft des Höreindruckes, die vor allem mit dem Schallspektrum verbunden ist. Sie erlaubt uns Schall mit denselben Höhen und Stärken zu unterscheiden.

Aufgabe 212 Ordne die Namen den Nummern auf dem Bild zu.

Lies den Text vor und beantworte die Fragen.

Wie funktioniert unser Ohr?

(Kurz, speziell für Physiker vorbereitet!!!)

Die Ohren reagieren auf die zahllosen Schwingungen in der Luft und senden Nervensignale über den Hörnerv ans Gehirn.

Der größte Teil des Ohrs befindet sich im Innern des Kopfes. Der Schall wird über den äußeren Gehörgang zum *Trommelfell* geleitet. Es bringt die Schalwellen zum Schwingen und lässt ein Knöchelchen - *den Hammer* gegen ein weiteres Knöchelchen - *den Amboss* schwingen. Der Amboss schlägt auf *den Steigbügel*. Die Schwingungen werden dadurch verstärkt und zum Innenohr, zur Schnecke weitergeleitet. Die Schnecke ist ein eingerolltes Organ, mit winzigen Härchen und Flüssigkeit gefüllt, durch welches sich der Schall sehr leicht bewegt. Während die Schallwellen durch die Schnecke pulsieren, fächeln sie die Härchen, die winzige Nervenzellen anregen, welche schließlich Signale durch den Hörnerv ans Gehirn schicken.

2. Wie heißen die drei Knöchelchen, die sich im Ohr befinden?
3. Wodurch pulsieren die Schallwellen?
4. Was regt Nervenzellen an?

1. Welche Rolle spielt der äußere Gehörgang bei der Leitung des Schalls im Ohr?

Rechenaufgaben

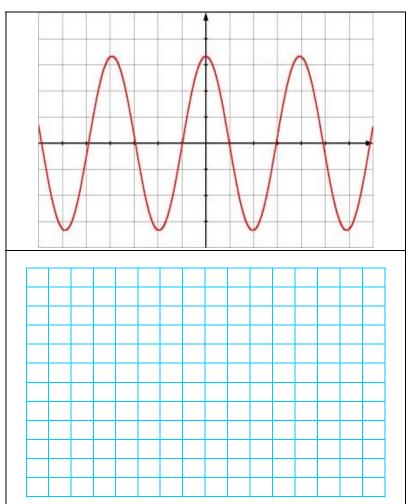
Aufgabe 214

Berechne die Wellenlänge einer Schallwelle in Luft, die von einer angeschlagenen Stimmgabel (Ton a; f= 440 Hz) ausgeht. Die Lufttemperatur beträgt 20°C.

Aufgabe 215

Die Länge einer Gitarrensaite beträgt 0,5m. Von ihr erzeugt man einen Schall mit der Frequenz f=3000 Hz. Berechne die Schallgeschwindigkeit!

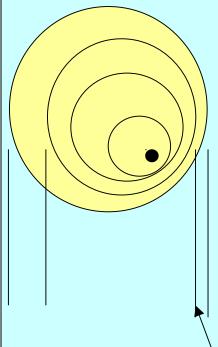
Aufgabe 216


Die Frequenz des von einer Saite hervorgebrachten Tons ist gleich f₀. Berechne den Wert der Frequenz f₁, nachdem die Saite um 1/4 gekürzt worden ist!

Aufgabe 217

Ein Blasinstrument (behandelt wie ein beidseitig offenes Rohr) hat eine Länge von 1m. Wie sind die Grundfrequenz sowie die Schwingung der 1. u. 2. Oberschwingung bei 20°C?

Mit einem Mikrophon und einem Oszilloskop wird ein Pfeifton registriert. Die Zeitachse des Oszilloskops ist auf 1,00 ms/cm eingestellt.


- a) Welche Frequenz hat der Ton in dem nebenstehenden Oszilloskopbild? Was ändert sich am ursprünglichen Bild, wenn man den Ton leiser stellt?
- b) Zeichne das Diagramm ab und trage in das Bild das Schwingungsbild eines um eine Oktave höheren Tones ein, der die gleiche Lautstärke wie der dargestellte Ton hat.

9. Doppler Effekt*

Grundwissen

Wenn sich eine Schallquelle gegenüber dem Beobachter bewegt, dann empfängt der Beobachter die Welle mit einer anderen Frequenz als der, die am Anfang war. Diese Frequenz ist größer beim Nähern der Quelle mit dem Empfänger und kleiner beim Entfernen. Das kann dieses Bild erklären:

v= die Schallgeschwindigkeit

v_z= Geschwindigkeit des Mediums

λ''= Länge der Welle vor dem Medium

λ'= Länge der Welle hinter dem Medium

$$\lambda' = (v + v_z)T$$

$$\lambda'' = (v - v_{\tau})T$$

Wenn sich die Schallquelle bewegt, dann sind die Abstände zwischen den Wellen nicht gleich groß. So breiten sich die Schallwellen aus, wenn sich die Schallquelle bewegt.

Wie wird die durch den Beobachter erfahrene Schallfrequenz berechnet?

$$f' = f \frac{v + v_0}{v + v_z}$$

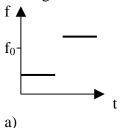
f' – die durch den Beobachter erfahrene Frequenz

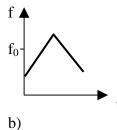
f – die durch die Quelle erzeugte Frequenz

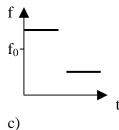
v – die Schallgeschwindigkeit

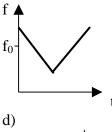
 $\mathbf{v_0}$ – die Beobachtergeschwindigkeit (bei Entfernen des Beobachters $\mathbf{v_0}$ <0)

 \mathbf{v}_z – Geschwindigkeit der Quelle (bei Entfernen der Quelle $\mathbf{v}_z < 0$)

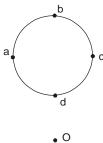

Wähle die richtige Worte aus dem Kasten aus!


a) In diesem Kasten sind drei Wörter zu viel!


die Frequenz	der Empfänger	der Abstand	die Welle		
der Schall	die Geschwindigkeit				
1) Was ändert sich, wenn	sich der Beobachter beweg	t?			
2) Anders Beobachter					
3) Bei ruhendem Beobachter und Schallquelle ist zwischen nacheinander folgenden Wellenberge immer gleich groß. b)					
Rettung	swagens; Veränderung; jede	er Richtung; Bewegung]		
Der Dopplereffekt besteht in der Länge der akustischen Welle bei der					
gegenüber dem Beobachter. Die Abstände zwischen den Flächen der					
gleichen Phase sind nicht in gleich groß. Dieses Phänomen ist uns aus					
dem Alltag bekannt, z.B. beim Vorbeifahren eines					
Rechenaufgaben					


Aufgabe 220

Zum Bahnwärter, der direkt bei den geradlinigen Schienen steht, nähert sich die mit konstanter Geschwindigkeit fahrende Lokomotive, die ein Signal der Frequenz f₀ sendet, und fährt weiter mit gleicher Geschwindigkeit. Die Abhängigkeit der Frequenz von der Zeit zeigt am besten das Diagramm

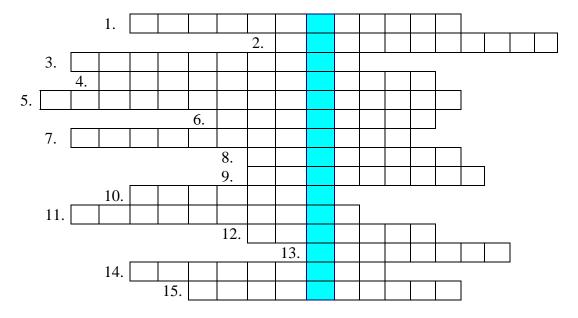


Aufgabe 221

Eine Schallquelle macht eine Kreisbewegung und sendet ein monochromatisches Signal. Der im O-Punkt stehende Beobachter hört den Schall mit der größten Frequenz, wenn die Schallquelle sich im Punkt

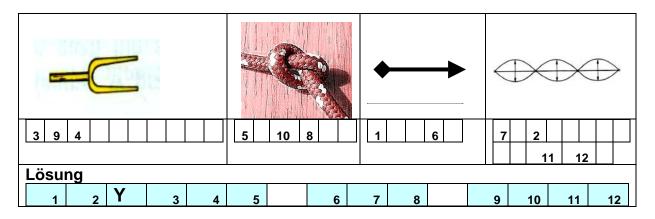
- a) a
- b) b
- c) c
- d) d
- befindet.

Aufgabe 222


Eine ruhende Schallquelle (Z) schwingt mit konstanter Frequenz f. Der Beobachter (O), der sich mit Geschwindigkeit gleich ½ der Schallgeschwindigkeit in der Luft bewegt, so wie es auf dem Bild gezeigt wurde, erfährt den Schall mit der Frequenz:

 \mathbf{Z} • b) 2f d) 0,25f a) f c) 0,5f

10. WEISS ICH DAS SCHON?


Aufgabe 223 (Rätsel)

- 1. Jeder kann sie in der eigenen Badewanne herstellen;
- 2. Anders gesagt: die Wellennormale;
- 3. Gegenteil zum Wellental;
- 4. Eine Welle ist eine räumliche und zeitliche Zuständsänderung.....er Gröβen;
- 5. die nach bestimmter periodischer.....erfolgt;
- 6. Anders gesagt: Impuls;
- 7. Bei Wellen kann sie räumlich oder zeitlich sein;
- 8. Sie ändert sich bei der Brechung nicht;
- 9. Gegenteil zu waagerecht;
- 10. z.B. Huygenssches;
- 11. Sie stellt uns den Betrag des Wellenvektors dar;
- 12. Er formulierte ein wichtiges Prinzip, das uns die Wellenlehre näher bringt;
- 13. Mit ihnen erwärmt uns die Sonne;
- 14. Eine der wichtigsten Erscheinungen bei den Wellen;
- 15. Sie treten als Träger für mechanische Wellen auf;

Aufgabe 224 (Rebus)

Wie heißen diese Gegenstände und Zeichnungen!

Was ist das?

		Antwort
1.	Der Abstand zwischen zwei Punkten gleicher Phase bei	
	einer Welle	
2.	Wellen, die durch periodische Bewegung entstehen	
3.	Die Ausbreitung einer mechanischen Schwingung im Raum	
4.	Die Teilchen einer Welle bewegen sich senkrecht zur	
	Ausbreitungsrichtung	
5.	Die Teilchen einer Welle bewegen sich längs der	
	Ausbreitungsrichtung	
6.	Die Umgebung einer Welle z.B. die Luft oder das Wasser	
7.	Die ursächliche Zustandsänderung des Systems	
8.	Quotient aus der Wellenlänge und der Schwingungsdauer	
9.	Die zusammenhängende Fläche aller Punkte innerhalb einer	
	Welle, die sich im gleichen Schwingungszustand befindet	
10.	Das Eindringen von Wellen, Hindernissen oder Öffnungen	
	in den geometrischen Schattenraum	

Aufgabe 226

Welche zwei Wörter passen nicht? Schreibe die richtigen Wörter ein!

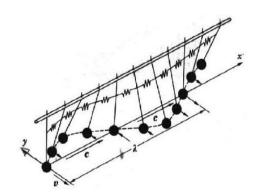
Wird ein Oszillator zu gedämpften Schwingungen angeregt, so wird Energie vom Erreger auf den Oszillator übertragen. Diese Übertragung ist besonders effektiv im Grenzfall. Welche Energie auf den Oszillator übertragen wird, hängt dabei insbesondere von der Dämpfung ab. Da die Reibungskraft mit der Geschwindigkeit wächst, ist die maximale Geschwindigkeit des Oszillators und damit seine potentielle Energie durch die Dämpfung begrenzt.

Aufgabe 227 Richtig oder falsch? "R" oder "F" eintragen

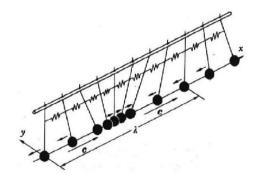
Kiening ouer raisen: K ouer "r emiragen				
		R oder F		
1.	Je mehr Öffnungen die Blende besitzen, desto besser werden			
	die Elementarwellen von einer einhüllenden Wellenfront			
	umgeben.			
2.	Treffen Wellen auf einen großen Einzelspalt - im Vergleich zu			
	der Wellenlänge - so spricht man von einer Beugung.			
3.	Wenn das Verhältnis (Wellenlänge zur Hindernisgröße) klein			
	ist, kann man die Beugung vernachlässigen.			
4.	Wenn die Anzahl von Quellen eine endliche Zahl ist, wie z. B im			
	Spalt, sprechen wir von Beugung.			
5.	Treffen Wellen auf ein Hindernis mit einer breiten Öffnung, so			
	entsteht dahinter eine kreisförmige Welle.			
6.	Während rechts vom Spalt die Welle eine einheitliche			
	Fortschreitungsrichtung hat, gekennzeichnet durch ein einziges			
	Lot als "Strahlrichtung", geht eine Elementarwelle links vom			
	Spalt kreisförmig nach allen Richtungen.			

Was kann über den Zustand eines harmonisch schwingenden Systems zum Zeitpunkt der maximalen Auslenkung ausgesagt werden?

- a Die potentielle Energie ist minimal.
- b. Die kinetische Energie ist minimal.
- c. Die Geschwindigkeit ist maximal bzw. minimal (je nach Vorzeichen).
- d. Die Beschleunigung ist Null.
- e. Beschleunigung ist immer negativ


Aufgabe 229

Verbinde!


1. Wenn eine Fledermaus durch die	a) zur Bestimmung der Wassertiefe
Dunkelheit fliegt,	angewendet, u.a. in der Medizin bei der
	Sonografie.
2. Die Ohren reagieren auf die zahllosen	b) die das Opfer lähmen oder dauerhaft
Schwingungen in der Luft und	verletzen können.
3. Nur in einem Vakuum ist es immer	c) stöβt sie ständig Ultraschallschreie aus.
absolut still,	
4. Infraschall hoher Intensität kann bei	d) senden Nervensignale über den Hörnerv
Menschen und Tieren zu Schwingungen	ans Gehirn, das sie als Geräusche
innerer Organe führen,	entschlüsselt.
5. Das Echo wird auf Schiffen mithilfe des	e) weil sich Schall nicht ohne Moleküle
Echolots	ausbraiteg kann.

Aufgabe 230

Die Einteilung der Wellen:

Quer- oder Transversalwelle

Längs- oder Longitudinalwelle

Definition	
Beispiele	

Beantworte die Fragen.	
------------------------	--

Erläutere den Begriff "Mechanische Welle" und nenne physikalische Größen zur	
Beschreibung einer mechanischen Welle.	
C	
	•
Nenne praktische Beispiele für das Auftreten von mechanischen Wellen.	

.....

Erläutere an Beispielen Ausbreitungseigenschaften von mechanischen Wellen.

.....

Testaufgaben

Aufgabe 232

Von welchen Größen hängt die Schwingungsdauer eines Fadenpendels ab?

- 1. der Amplitude
- 2. der Dämpfung
- 3. der Pendelmasse
- 4. der Pendellänge

Aufgabe 233

An einem harmonisch schwingenden Fadenpendel wird die Pendelmasse verdoppelt. Wie verändert sich die Frequenz?

- 1. Sie wird halbiert.
- 2. Sie bleibt gleich.
- 3. Sie verändert sich um den Faktor $\sqrt{2}$.
- 4. Sie wird vervierfacht.

Aufgabe 234

Welche Erscheinungen beobachten wir, wenn wir eine Welle sehen, die auf das Ufer stößt:

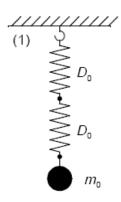
- 1. nur eine Reflexion;
- 2. nur eine Brechung;
- 3. eine Brechung und eine Reflexion;
- 4. keine von den beiden Erscheinungen;

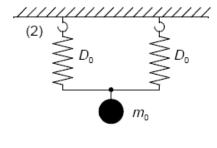
Aufgabe 235

Was wird bei einer Brechung nicht geändert?

- 1. die Geschwindigkeit einer Welle;
- 2. die Wellenlänge;
- 3. die Frequenz einer Welle;
- 4. die Richtung einer Welle;

Aufgabe 236


Womit bildet der Einfallwinkel α - Winkel?


- 1. Wellennormale;
- 2. Amplitude;
- 3. Brechungswinkel;
- 4. Oberflächengrenze;

Abituraufgabe aus Deutschland – Was müssen unsere deutschen Freunde im Grundkurs Physik lösen?

(Sachsen 1995 – Grundkurs)

- 1. Ein Fadenpendel der Länge 80 cm wird um 5,0° ausgelenkt und dann losgelassen.
 - a) Berechnen Sie die Schwingungsdauer, die Frequenz und die Geschwindigkeit beim Nulldurchgang.
 - b) 50 cm unter dem Aufhängepunkt befinde sich bei einem anderen Versuch mit demselben Fadenpendel ein fester Stift, an den sich der Faden während der Schwingung vorübergehend anlehnt. Berechnen Sie die Schwingungsdauer und die Frequenz.
- Ein vertikaler Federschwinger mit einer angehängten Masse von 50 g schwingt mit einer Frequenz von 0,56 Hz. Berechnen Sie die Federkonstante D.
- Das Fadenpendel aus Aufgabenteil 1. a) befindet sich auf dem Mond, ebenso der Federschwinger aus Aufgabe 2.
 - a) Berechnen Sie für das Fadenpendel die Schwingungsdauer, die Frequenz und die Geschwindigkeit beim Nulldurchgang.
 - b) Mit welcher Schwingungsdauer schwingt der Federschwinger auf dem Mond? Begründen Sie Ihre Aussage.
- 4. Ein Federschwinger habe die Federkonstante D₀; an ihn wird die Masse m₀ gehängt. Die Schwingungsdauer dieses Federschwingers sei T₀. aus jeweils zwei Federschwingern dieser Art werden folgende Anordnungen (1) und (2) gebaut:

- a) Wie groß sind die Federkonstanten D_1 und D_2 der beiden Anordnungen?
- b) Berechnen Sie die sich daraus ergebenden Schwingdauern T_1 und T_2 der beiden Anordnungen.
- c) Die gleichen Massen m_0 der Anordnungen (1) und (2) sollen durch andere Massen m_1 bzw. m_2 derart ersetzt werden, daß jede der beiden Anordnungen die Schwingungsdauer T_0 ausweist. Geben Sie die Verhältnisse m_1 : m_0 : und m_2 : m_0 an.
- Erläutern Sie die Erscheinung "Resonanz". Beschreiben Sie zwei Beispiele ihres Auftretens bzw. ihrer Nutzung.

Fachwortschatz

r achwortschatz	
A	
Ablenkung, die, -, -en	odchylenie
Abschirmung, die, -, -en	osłonięcie
absolute Temperaturskala, die, -en/-, -en/ -en	bezwzględna skala temperatury
absoluter Nullpunkt, der, -en/ -es, -en/ -e	zero bezwzględne
Abstand, der, -es, Abstände	odstęp
abstoßen, stoß ab, abgestoßen	odpychać
abstoßende Kräfte	siły odpychające
Adhäsion, die, -, -en	adhezja, przyleganie
Aggregatzustand, der, -es, Aggregatzustände	stan skupienia
Akkumulator, der, -s, -en	akumulator
Allgemeines Gasgesetz, das, -en/ -es, -en/ -e	podstawowe prawo teorii kinetyczno-
	molekularnej
Anfangspunkt, der, -es, -e	punkt początkowy
Anion, das, -s, -en	anion
annehmen, nahm an, angenommen	przyjąć, założyć
Anzahl, die, -, -en	liczba
anziehen, zog an, angezogen	przyciągać
anziehende Kräfte	siły przyciągające
Arbeitsmedium, das, -s, Arbeitsmedien	czynnik termodynamiczny
Atom, das, -s, -e	atom
Atomhülle, die, -, -n	powłoka atomowa
Atomkern, der, -s, -e	jądro atomowe
Aufladen, lud auf, aufgeladen	naładować
Aufnahme, die, -, -n	przyłączenie
Ausdehnung, die, -, -en	rozciągnięcie, rozszerzenie
Auslenkung, die , -, -en	odchylenie
Auslöschung, die, -, -en	ekstynkcja(zanikanie światła)
Ausschlag, der, -es, Ausschläge	wychylenie
Auftreten, traf auf, aufgetreten	występować
aus Molekülen aufgebaut sein	być zbudowanym z molekuł
Ausrichtung, die, -, -en	ustawienie
Abbremsen, bremste ab, abgebremst	zahamować
abhängen von + D	zależeć od
anwenden	zastosować
anziehen, sich	przyciągać się
abstoßen, sich	odpychać się
ausgehen von	wychodzić z założenia, że
ausüben	wywierać
В	
Bahn, die, -, -en	tor
Bandgenerator, der, -s, -en	generator (służący do wytwarzania
	111 1/11

wysokich napięć elektrycznych)

Berühren, das, -s, -,	dotknięcie, dotyk	
Beschleunigungsspannung, die, -, -en	napięcie przyspieszające	
Bedingung, die, -, -en	warunek	
beliebig	dowolny	
Bereich, der, -s, -e	zakres	
bestehen aus + D	składać się z	
Betrag, der, -s, Beträge	wartość	
Bezeichnung, die, -, -en	określenie	
Bezugspunkt, der, -es, -e	punkt odniesienia	
Bindung, die, -, -en	wiązanie wiązanie	
Blende, die, -, -n	przysłona	
Brechung, die, -, -en	załamanie	
Brechungswinkel, der, -s, -	kat załamania	
beeinflussen	wpływać na coś	
bezeichnen	określać	
berechnen	obliczyć	
bestimmen	określać, wyznaczać	
betragen	wynosić	
bewegen, sich	poruszać się	
D D	poruszac się	
der Coulomb,	kulomb	
das coulombsche Gesetz		
Dampfdruckkurve, die, -, -en	prawo Coulomba	
Dainpidi dekkurve, die, -, -en Dauermagnet, der, -en, -en	krzywa równowagi termodyn. para-ciecz	
Dämpfung, die, -, -en	magnes trwały tłumienie	
Diagramm, das, -s, -e		
Dichte, die, -, -n	diagram	
Diffussion, die, -, -en	gęstość	
Difraktion, die, -, -en	dyfuzja, przenikanie	
	dyfrakcja	
Dipol, der, -s, -e	dipol	
Dissoziation, die, -, -en	dysocjacja	
Drehimpuls, der, -es, -e	moment pędu	
Driftgeschwindigkeit, die, -, -en	prędkość dryfu	
Durchmesser, der, -s, -, darstellen	średnica	
	przedstawiać	
dividieren	dzielić	
E		
Eigenfrequenz, die, -, -en	częstotliwość własna	
Einheit, die, -, -en	jednostka	
Einfallswinkel, der, -s, -	kąt padania	
Einfluss, der, -es, Einflüsse	wpływ	
(unter dem Einfluss + G –)	pod wpływem czegoś)	
(Eisen)Feilspäne, Pl,	opiłki (żelaza)	
Elektromagnet, der, -en, -en	elektromagnes	
elektrisch neutral	obojętny elektrycznie	

elektrische Ladung, die	ładunek elektryczny		
elektrisches Feld, das	pole elektryczne		
Elektrometer, das, -s, -,	elektrometr		
Elektron, das, -s, -en	elektron		
Elektronenmangel, der, -s, -mängel	niedobór elektronów		
Elektronenstrahlröhre, die, -, -n	lampa elektronowa		
Elektronenüberschuss, der, -es, -überschüsse	nadwyżka elektronów		
Elementarladung, die, -, -en	ładunek elementarny		
Elongation, die, -, -en	elongacja, wychylenie		
Energieaufwand, der, -es, Energieaufwände	nakład energii		
Energieerhaltungssatz, der, -es, -sätze	zasada zachowania energii		
entgegengesetzte Richtung	przeciwny kierunek		
Erhaltungssatz, der, -es, -sätze	prawo zachowania		
Erregerfrequenz, die, -, -en	częstotliwość wymuszająca		
Erstarren, das, -s, -	krzepnąć		
Erstarrungstemperatur, die, -, -en	temp. krzepnięcia		
Erzwungene Schwingung, die, -en/ -, -en/ -en	drganie wymuszone		
Expansion, die, -, -en	ekspansja, rozszerzanie		
entladen, entlud, entladen	rozładować		
entstehen	powstawać		
ergeben sich	okazywać się		
erzeugen	wytwarzać		
ermitteln	wyznaczyć, zbadać		
entgegengesetzt gerichtet	zwrócony w przeciwnym kierunku		
erheblich	znaczny		
experimentell	eksperymentalny, doświadczalny		
elektromagnetisch	elektromagnetyczny		
F			
Fadenpendel, das, -s, -	wahadło niciowe		
Faktor, der, -s, -en	czynnik		
Federpendel, das, -s, -	wahadło sprężynowe		
Feld, das, -[e]s, -er	pole		
Feldkonstante, die, -n, -n	stała pola		
Feldkraft, die, -, -kräfte	siła pola		
Feldgröße, die, -, -n	wielkość pola		
Feldlinie, die, -, -n	linia pola		
Feldlinienbild, das, -s, -,	obraz linii pola		
Fernsehbildröhre, die, -, -n	lampa kineskopowa		
Festlegung, die, -, -en	ustalenie		
Fluss, der, -es, Flüsse	strumień pola		
Flussdichte, die, -, -en	indukcja magnetyczna		
G	, ,		
Gaskonstante, die, - , -en stała gazowa			
Gasmenge, die, -, -en ilość gazu			
gedämpfte Schwingung, die, -en/ -, -en/ -en	drganie tłumione, gasnące		
	urgame numone, gasnace		

Generator, der, -s, -en	prądnica, generator	
Gesetz, das, -es, -e	prawo, zasada	
Gitterplatz, der, -es, Gitterplätze	węzeł sieci	
Glimmlampe, die, -, -n	lampa wyładowcza	
Gehäuse, das, -s, -,	obudowa	
Geräusch, das, -es, -e	szum, szmer, szelest, odgłos	
Gleichgewicht, das, -es,	równowaga	
Gleichgewichtslage, die, -, -en	stan równowagi	
Gleichstromgenerator, der, -s, -en	generator prądu stałego	
Gleichung, die, -, -en	równanie	
Graph, der, -en, -en	wykres, graf	
geladen	naładowany	
H	,	
Hufeisenmagnet, der, -en, -e	magnes podkowiasty	
hervorrufen, ruf hervor, hervorgerufen	wywoływać	
homogen	pole jednorodne	
I		
im Inneren	we wnętrzu	
Induktion, die, -, -en	indukcja	
Induktivität, die, -, -en	indukcyjność	
Influenz, die, -, - en,	indukcja (elektrostatyczna)	
Influenzmaschine, die, -, -n	maszyna elektrostatyczna	
Ion, das, -s, -en	jon	
Isolator, der, -s, -en	izolator	
irreversibel	nieodwracalny	
isobarische Umwandlung, die , -en/ - , -en/ -en	przemiana izobaryczna	
isochorische Umwandlung, die, -en/ -, -en/ -en	przemiana izochoryczna	
Isochronismus, der, -es, Isochronismen	izochronizm,	
Isotherme, die, -, -en	izoterma	
isothermische Umwandlung, die, -en/ -, -en/ -en	przemiana izotermiczna	
induzieren	indukować	
im Unterschied zu + D	w odróżnieniu od	
im Vergleich zu/mit + D	w porównaniu z	
im Abstand von + D	w odległości od	
in Entfernung von + D	w oddaleniu od	
K		
Kapazität, die, -, -en	pojemność	
Kation, das, -s, -en	kation	
Kältemischung, die, -, -en	mieszanina zamrażająca	
Klang, der, -es, Klänge	brzmienie	
Knall, der, -s, -e	huk, trzask, wybuch	
Knoten, der, -s, -	węzeł	
Kohäsion, die, -, -en	kohezja, spójność	
Kompression, die, -, -en	kompresja, sprężanie	
Kondensieren, das, -s, -	kondensacja, skraplanie	

Kondensator, der, -s, -en	kondensator
Kraftkomponente, die, -, -n	składowa siły
Kreisprozess, der, -es, -e	obieg, cykl
kennzeichnen	oznaczyć
kreisförmig	w kształcie okręgu
konstant	stały
konkav	wklęsły
konvex	wypukły
L	
Ladung, die, -, -en	ładunek
Ladungsausgleich, der, -s, -e	wyrównanie (zobojętnienie) ładunku
Ladungsteilung, die, -, -en	podział ładunku
Ladungsträger, der, -s, -,	nośnik ładunku, elektron
Ladungstrennung, die, -, -en	podział ładunku
Ladungsverschiebung, die, -, -en	przesunięcie ładunku
Länge, die, -, -n	długość
Längswelle, die, -, -en	fala podłużna
Leiter, der, -s, -,	przewodnik
Leiterquerschnitt, der, -s, -e	przekrój poprzeczny przewodnika
Legierung, die, -, -en	stop (metali)
lenzsches Gesetz	reguła Lenza
Leuchtschirm, der, -es, -e	ekran (w monitorze, lampie kineskopowej)
Leuchtstofflampe, die, -, -n	świetlówka, jarzeniówka
Longitudinalwelle, die, -, -en	fala podłużna
luftgefüllt	wypełniony powietrzem
M	
Magnetpol, der, -s, -e	biegun magnesu
Massenmittelpunkt, der, -s, -e	punkt środka ciężkości
Medium, das, -s, Medien	środowisko, ośrodek
Meniskus, der, -, Menisken	menisk
Messgerät, das, -es, -e	miernik
Metallstab, der, -s, -stäbe	pałeczka metalowa
Molekül, das, -s, -e	molekuła, cząsteczka
magnetisch	magnetyczny
mithilfe + G	za pomocą czegoś
N	
Normalbedingungen, die, -, -	warunki normalne
Nutzenergie, die, -, -n	energia użyteczna
näherungsweise	w przybliżeniu
negativ geladene Elektronen	ujemnie naładowane elektrony
neutral	obojętny
Niveau, das, -s, -s	poziom
nachweisen	udowodnić

P	
Parallelschaltung, die, -, -en	
Periode, die, -, -en	połączenie równoległe
Permeabilität, die, -, -,	okres
Permittivität, die, -, -,	przenikalność magnetyczna
Platte, die, -, -n	przenikalność elektryczna
Plattenkondensator, der, -s, -en	płyta
Polarisation, die, -, -en	kondensator płaski
Polarlicht, das, -es, -er	polaryzacja
Potential, das, -s, -e	zorza polarna
potentielle/potenzielle Energie	potencjał
Potenzialdifferenz, die, -, -en	energia potencjalna
Prinzip, das, -s, -ien	różnica potencjałów
Probeladung, die, -, -en	zasada, reguła
Proton, das, -s, -en	ładunek próbny
parabelförmig	proton
parallel	o kształcie paraboli, paraboliczny
primär	równoległy
P	pierwotny
Q	promoving
Quadratmeter, der/das, -s, -,	metr kwadratowy
Querschnittsfläche, die, -, -n	powierzchnia przekroju poprzecznego
Querwelle, die, - , -en	fala poprzeczna
Quotient, der, -en, -en	iloraz
R	110142
Radialfeld, das, -es, -er	pole centralne
Radius, der, -, -ien	promień
Raum, der, -s, Räume	przestrzeń
Reflexion, die, -, -en	odbicie
Reflexionswinkel, der, -s, -	kat odbicia
Reiben, das, -s, -,	pocieranie, tarcie
Reihenschaltung, die, -, -en	połączenie szeregowe
Resonanz, die , -, -en	rezonans
Resublimieren, das, -s, -	resublimacja
Richtung, die, -, -en	kierunek
Rotor, der, -s, -en	wirnik
Ruhelage, die, -, -en	stan spoczynku
Rückstellkraft, die, -, Rückstellkräfte	siła przywracająca
räumlich	przestrzenny
relativ	względnie
reversibel	odwracalny
S	
Schall, der, -s, -	dźwięk
Schallintensität, die, -, -en	natężenie dźwięku

Schallerreger, der, -s, urządzenie powodujące wytworzenie dźw. Schallpegel, der, -s, poziom ciśnienia akustycznego Schallquelle, die, -, -en źródło dźwięku Schaltung, die, -, -en układ połaczeń Selbstinduktion, die, -, -en samoindukcja Schlitz, der, -es, -e szczelina, rozcięcie schmelzen, das, -s, topnienie Schmelztemperatur, die, -, -en temp. topnienia Siedetemperatur, die, -, -en temp. wrzenia Spalt, der, -es, -en pęknięcie, szczelina Spannung, die, -, -en napięcie Spannungsquelle, die, -, -n źródło napięcia Speicherfähigkeit, die, -, -en zdolność gromadzenia (np. ładunku elektrycznego) spezifische Schmelzwärme, die, -en/-, -en/ -en ciepło topnienia spezifische Verdampfungswärme, die,-en/-,-en/-en ciepło parowania spezifische Wärmekapazität, die, -en/-, -en/ -en ciepło właściwe Spule, die, -, -n – zwojnica, cewka Spulenwindung, die, -, -en zwój cewki Spannung, die, -, -en napięcie Strom, der, -s, Ströme prad Stabmagnet, der, -en, -e magnes sztabkowy Stärke, die, -, -n siła (oddziaływania) Stoff, der, -s, -e materiał Stoß, der, -es, Stöße uderzenie Störung, die, -, -en zakłócenie Strahlung, die, -, -en promieniowanie Stromfluss, der, -es, -flüsse przepływ prądu Stromkreis, der, -es, -e obwód elektryczny Stromstärke, die, -, -n natężenie prądu Superpositionsprinzip, das, -s, -ien zasada superpozycji Schwingkreis, der, -es, -e układ drgający Schwingungsdauer, die, -, -n okres drgań Schwingungsweite, die, -, -en amplituda drgań schräg pochyły, ukośny schwach słaby sekundär wtórny senkrecht prostopadły spiralförmig w kształcie spirali, spiralny stark silny, mocny symmetrisch symetryczny thermodynamisches Gleichgewicht, das,-en/-es,-en/-e równowaga termodynamiczna Thermometer, das, -s, termometr

cząsteczka

Teilchen, das, -s, -,

Term, der, -s, -e	wzór		
Transformator, der, -s, -en	transformator		
Transversalwelle, die, -, -en	fala poprzeczna		
Träger, der, -s, -	nośnik		
Tripelpunkt, der, -es, -e	punkt potrójny		
$ \mathbf{U} $			
Untersuchung, die, -, -en	badanie		
Überlagerung, die, -, -en	nakładanie		
Umkehrpunkt, der, -es, -e	punkt zwrotny		
Umwandlung, die, -, -en	przemiana		
umfassen	obejmować		
unter der Bedienung, dass	pod warunkiem, że		
(un)belastet –	(nie)obciążony		
(un)geordnet	(nie)uporządkowany		
(un)magnetisiert	(nie)namagnesowany		
unter einem beliebigen Winkel	pod dowolnym kątem		
unter der Voraussetzung	pod warunkiem		
V			
Vektor, der, -s, -en	wektor		
verdampfen, das, -s, -	wyparować		
vergleichbar	porównywalny		
Verhalten, das, -s, -,	zachowanie się		
Verlauf, der, -s, Verläufe	przebieg		
Verstärkung, die, -, -en	wzmocnienie		
verrichtete Arbeit	wykonana praca		
verschieben	przesuwać		
vielfach	wielokrotny		
Volt, das	wolt		
Vorgang, der, -s, Vorgänge	proces		
Vorgehensweise, die, -, -en	sposób postępowania		
verhalten sich	zachowywać się		
vektoriell	wektorowy		
veränderlich	zmienny		
vergleichbar	porównywalny		
Verlauf, der, -s, Verläufe	przebieg		
W			
Wärmebilanz, die, -, -en	bilans cieplny		
Welle, die, -, -n	fala		
Wellenberg, der, -es, -e	grzbiet fali		
Wellenlänge, die, -, -en	długość fali		
Wellennormale, die, -, -n	prostopadła do pow. fali		
Wellental, das, -es, -e	dolina fali		
Wellenvektor, der, -s, -en	wektor falowy		
Wellenzahl, die, -, -en	liczba falowa		
Wechselstromgenerator, der, -s, -en	generator prądu przemiennego		

Winkel, der, -s, -,	kąt	
Wirbelstrom, der, -s, -ströme	prąd wirowy	
Wirkung, die, -, -en	działanie	
Wirkungsgrad, der, -es, -e	współczynnik sprawności	
wirken, wirkte, gewirkt	działać	
wirken auf	działać na coś	
winzig	malutki, drobny	
$ \mathbf{Z} $		
Zeitintervall, das, -s, -e	przedział czasowy	
Zeitabhängiger Vorgang, der, -en/ -es, -en/ -e	proces zależny od czasu	
Zusammenhang, der, -s, Zusammenhänge	zależność	
Zustand, der, -[e]s, Zustände	stan	
Zustandsgleichung, die, -, -en	równanie stanu	

Lösungen der Rechen- und Testaufgaben

Kapitel I – Elektrostatik

```
14. Q_1 = Q_2 = 1mC, Kraft ist 8-mal kleiner geworden
17. F = 82nN
24. b) tg\alpha = 0.1; c) a = 0.5 \text{m/s}^2.
25. F = 1,6mN
26. q = 1,6 \cdot 10^{-18} C
27. a) 18kV; b) 4/3m und 4m rechts von der positiven Ladung; c) \Delta E = -36mJ.
28. V_2 > V_1 = V_3 = V_4
29. a) auf höheres Potential b) W>0; c) W_1 = W_2 = W_3
30. v = 2m/s
31. D
32. D
34. a = 0.16 \text{m/s}^2
41. a) Q_1 = Q_2 = 24\mu C; b) E = 72 \mu J.
42. A
43. B
44. 100 Kondensatoren – parallel
45. q = 1.5 \cdot 10^{-15} C
46. A
47. C
48. D
49. C
50. B
51. C
52. C
53. C
54. C
55. D
56.
                                         3. Spannung 4. Feldlinie
1. Elektrometer
                        2. Potenzial
5. Influenz
                6. Oszilloskop
                                         7. Polarisation
                                                                  8. Feldstärke
9. Coulomb
                10. Proton
58. F = 11.45N
59. a) 8.85 \text{nF}; b) Q = 88.5 \text{nC}; W = 0.44 \mu \text{J}; c) C' = 212.4 \text{nF}, Q' = 2.12 \mu \text{C}.
```

Kapitel II - Magnetismus

```
68. I = 2A 
69. a) B= 1,6·10<sup>-4</sup> T b) B= 3,25·10<sup>-4</sup> T (im Punkt zwischen den Leitern) oder B= 0,8·10<sup>-5</sup> T (im Punkt der 9cm von Leiter I<sub>2</sub> entfernt ist), c) x = 0,5d. 
70. n_2 = 20 Windungen 
78. B = 95mT 
79. a) v = 4,4 \cdot 10^6 m/s, b) U = 88V 
84. U<sub>1</sub> = 0 für t \in (0s; 0,5s) , U<sub>2</sub> = -2·10<sup>-6</sup> V für t \in (0,5s; 1,0s), U<sub>3</sub> = 0 für t \in (1,0s; 2,5s), U<sub>4</sub> = 2·10<sup>-6</sup> V für t \in (2,5s; 3,5s), U<sub>5</sub> = 0 für t > 3,5s.
```

```
85. a) U_{ind} = 0.3V, b) Linke Trägfläche
```

86. a)
$$L = 3.08 \text{ mH}$$
, b) $U_{ind} = 8.47 \text{mV}$, c) $U_{ind} = 1.85 \text{V}$

87. L =
$$7.37 \cdot 10^{-4}$$
 H; $U_{ind} = 3.685$ mV

88. L = 3.9 mH,

89. U = 9.6 mV

90. a)
$$I = 45 \text{mV}$$
; $F = 4.1 \text{mN}$

97. a)
$$I_0 = 0.37A$$
; b) $I_0 = 0.61A$

98.
$$U_2 = 7360V$$

99. a)
$$k = 1:30$$
; b) $I_1 = 360A$

100.
$$U_0 = 0.38V$$
; $U_{eff} = 0.267V$

- 103. C
- **104.** C
- **105.** A
- **106.** C
- **107.** C
- **108.** C
- 109. B
- **111**. A
- 111. 1
- 112. C

113.
$$U_1 = -33,3V$$
; $U_2 = 0V$; $U_3 = 40V$; $U_4 = 0V$.

116.
$$x = 0.25d$$

Kapitel III Thermodynamik

- 118. 1-B, 2-E, 3-F, 4-C, 5-A, 6-D
- 120. (1) Oberflächenspannung, (2) Meniskus, (3) nach unten, (4) nach oben,
- 124. p wird vier mal größer
- $125. \approx 1.72 \text{ m}^3$
- 126.≈ 1157 hPa
- 129.≈ 1114,5 hPa
- 130. .≈ 1549 hP
- 131. 1150 hPa
- 132. 303°C
- 133. $\sqrt[2]{2}$ cm

134.
$$\rho \approx 3,48 \frac{kg}{m^3}$$

- 135 1. isochorische, 2 isobarische, 3 isothermische
- 136. 1. Gay Lussac, 2. Mariotte 3. Boltzmann 4. Boyle 5. Kelvin 6. Fahrenheit 7. Bernoulli 8. Carnot
- 139. xxx
- 141. 2,43 m
- 142. 479 kJ
- 143. 49°C, 20%
- 144. 38%, 205,8 MJ

145.

Q	W	ΔU
+	+	+
+	0	+
-	-	-

147. FFRRR

$$152.338 \frac{J}{kgK}$$

$$157. \approx 472 \ \frac{J}{kg}$$

167. pkt. 2 a)
$$\Delta V = 9.1 \text{ cm}^3$$
,

2 c)
$$Q-\Delta U=0.92 J$$

$$4.a)$$
 21,8 m³

Kapitel IV Schwingungen und Wellen

172. a)
$$10 \sin 0.2\pi$$
 cm

$$173 \approx 1 \text{ Hz}$$

174. b)
$$\frac{1}{600}$$
 s

175.
$$\approx 2.1 \text{ cm i } 4.2 \text{ cm}$$

$$181.\approx 9,83 \ \frac{m}{s^2}$$

$$182. \approx 2,372 \text{ s}$$

183.
$$\approx 9,79 \frac{m}{s^2}$$

184.skrócić wahadło o około 90 cm

193. A=1dm, T=0,4s,
$$\lambda$$
=1,2m

194. f=4Hz,
$$\lambda$$
=1,2m, v=4,8 $\frac{m}{s}$

195.
$$y(x,t)=0$$

- 196. a) $y(x,t)=0.02\sin 20\pi(20t+x)$
 - b) 50 $\frac{m}{s}$
 - c) 40 $\frac{m}{s}$
- 201. FFRFRR
- 204. 0,61
- 205. $\approx 20 \frac{m}{s}, \approx 3^{\circ}30^{\circ}$
- 206. ≈25°
- 208. a)F, b)R, c) R, d) F
- 212. Ohrknorpel (1),Ohrkanal (2),Ohrmuschel (3),Trommelfell (4),ovale Fenster (5),Hammer (6), Amboss (7), Steigbügel (8),Labyrinth, (Bogengänge)(9), Gehörschnecke (10), Hörnerv (11), eustachische Röhre (12)
- 214. λ ≈ 0,77 m
- 215. v = $3000 \frac{m}{s}$
- 216. $f_x = \frac{4}{3} f_0$
- 217. f = 170 Hz
- 220. c
- 221. c
- 223.
- 1. Wasserwellen
- 2. Einfallslot
- 3. Wellenberg
- 4. physikalisch

- 5. Gesetzmäßigkeit
- 6. Anregung
- 7. Beschreibung
- 8. Frequenz

- 9. senkrecht
- 10. Prinzip
- 11. Wellenzahl
- 12. Huygens

- 13. Strahlen
- 14. Reflexion
- 15. Festkörper

- 227. RFFFFF
- 229. 1c, 2d, 3e, 4b, 5a
- 232.4
- 233.2
- 234. 1
- 235.3
- 236. 1